

Understanding Machine Learning:
From Theory to Algorithms

c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

This copy is for personal use only. Not for distribution.

Do not post. Please link to:

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

Please note: This copy is almost, but not entirely, identical to the printed version

of the book. In particular, page numbers are not identical (but section numbers are the

same).

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

Understanding Machine Learning

Machine learning is one of the fastest growing areas of computer science,
with far-reaching applications. The aim of this textbook is to introduce
machine learning, and the algorithmic paradigms it offers, in a princi-
pled way. The book provides an extensive theoretical account of the
fundamental ideas underlying machine learning and the mathematical
derivations that transform these principles into practical algorithms. Fol-
lowing a presentation of the basics of the field, the book covers a wide
array of central topics that have not been addressed by previous text-
books. These include a discussion of the computational complexity of
learning and the concepts of convexity and stability; important algorith-
mic paradigms including stochastic gradient descent, neural networks,
and structured output learning; and emerging theoretical concepts such as
the PAC-Bayes approach and compression-based bounds. Designed for
an advanced undergraduate or beginning graduate course, the text makes
the fundamentals and algorithms of machine learning accessible to stu-
dents and nonexpert readers in statistics, computer science, mathematics,
and engineering.

Shai Shalev-Shwartz is an Associate Professor at the School of Computer
Science and Engineering at The Hebrew University, Israel.

Shai Ben-David is a Professor in the School of Computer Science at the
University of Waterloo, Canada.

UNDERSTANDING
MACHINE LEARNING

From Theory to
Algorithms

Shai Shalev-Shwartz
The Hebrew University, Jerusalem

Shai Ben-David
University of Waterloo, Canada

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107057135

c⃝ Shai Shalev-Shwartz and Shai Ben-David 2014

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2014

Printed in the United States of America

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication Data

ISBN 978-1-107-05713-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of
URLs for external or third-party Internet Web sites referred to in this publication,
and does not guarantee that any content on such Web sites is, or will remain,
accurate or appropriate.

Triple-S dedicates the book to triple-M

vii

Preface

The term machine learning refers to the automated detection of meaningful

patterns in data. In the past couple of decades it has become a common tool in

almost any task that requires information extraction from large data sets. We are

surrounded by a machine learning based technology: search engines learn how

to bring us the best results (while placing profitable ads), anti-spam software

learns to filter our email messages, and credit card transactions are secured by

a software that learns how to detect frauds. Digital cameras learn to detect

faces and intelligent personal assistance applications on smart-phones learn to

recognize voice commands. Cars are equipped with accident prevention systems

that are built using machine learning algorithms. Machine learning is also widely

used in scientific applications such as bioinformatics, medicine, and astronomy.

One common feature of all of these applications is that, in contrast to more

traditional uses of computers, in these cases, due to the complexity of the patterns

that need to be detected, a human programmer cannot provide an explicit, fine-

detailed specification of how such tasks should be executed. Taking example from

intelligent beings, many of our skills are acquired or refined through learning from

our experience (rather than following explicit instructions given to us). Machine

learning tools are concerned with endowing programs with the ability to “learn”

and adapt.

The first goal of this book is to provide a rigorous, yet easy to follow, intro-

duction to the main concepts underlying machine learning: What is learning?

How can a machine learn? How do we quantify the resources needed to learn a

given concept? Is learning always possible? Can we know if the learning process

succeeded or failed?

The second goal of this book is to present several key machine learning algo-

rithms. We chose to present algorithms that on one hand are successfully used

in practice and on the other hand give a wide spectrum of different learning

techniques. Additionally, we pay specific attention to algorithms appropriate for

large scale learning (a.k.a. “Big Data”), since in recent years, our world has be-

come increasingly “digitized” and the amount of data available for learning is

dramatically increasing. As a result, in many applications data is plentiful and

computation time is the main bottleneck. We therefore explicitly quantify both

the amount of data and the amount of computation time needed to learn a given

concept.

The book is divided into four parts. The first part aims at giving an initial

rigorous answer to the fundamental questions of learning. We describe a gen-

eralization of Valiant’s Probably Approximately Correct (PAC) learning model,

which is a first solid answer to the question “what is learning?”. We describe

the Empirical Risk Minimization (ERM), Structural Risk Minimization (SRM),

and Minimum Description Length (MDL) learning rules, which shows “how can

a machine learn”. We quantify the amount of data needed for learning using

the ERM, SRM, and MDL rules and show how learning might fail by deriving

viii

a “no-free-lunch” theorem. We also discuss how much computation time is re-

quired for learning. In the second part of the book we describe various learning

algorithms. For some of the algorithms, we first present a more general learning

principle, and then show how the algorithm follows the principle. While the first

two parts of the book focus on the PAC model, the third part extends the scope

by presenting a wider variety of learning models. Finally, the last part of the

book is devoted to advanced theory.

We made an attempt to keep the book as self-contained as possible. However,

the reader is assumed to be comfortable with basic notions of probability, linear

algebra, analysis, and algorithms. The first three parts of the book are intended

for first year graduate students in computer science, engineering, mathematics, or

statistics. It can also be accessible to undergraduate students with the adequate

background. The more advanced chapters can be used by researchers intending

to gather a deeper theoretical understanding.

Acknowledgements

The book is based on Introduction to Machine Learning courses taught by Shai

Shalev-Shwartz at the Hebrew University and by Shai Ben-David at the Univer-

sity of Waterloo. The first draft of the book grew out of the lecture notes for

the course that was taught at the Hebrew University by Shai Shalev-Shwartz

during 2010–2013. We greatly appreciate the help of Ohad Shamir, who served

as a TA for the course in 2010, and of Alon Gonen, who served as a TA for the

course in 2011–2013. Ohad and Alon prepared few lecture notes and many of

the exercises. Alon, to whom we are indebted for his help throughout the entire

making of the book, has also prepared a solution manual.

We are deeply grateful for the most valuable work of Dana Rubinstein. Dana

has scientifically proofread and edited the manuscript, transforming it from

lecture-based chapters into fluent and coherent text.

Special thanks to Amit Daniely, who helped us with a careful read of the

advanced part of the book and also wrote the advanced chapter on multiclass

learnability. We are also grateful for the members of a book reading club in

Jerusalem that have carefully read and constructively criticized every line of

the manuscript. The members of the reading club are: Maya Alroy, Yossi Arje-

vani, Aharon Birnbaum, Alon Cohen, Alon Gonen, Roi Livni, Ofer Meshi, Dan

Rosenbaum, Dana Rubinstein, Shahar Somin, Alon Vinnikov, and Yoav Wald.

We would also like to thank Gal Elidan, Amir Globerson, Nika Haghtalab, Shie

Mannor, Amnon Shashua, Nati Srebro, and Ruth Urner for helpful discussions.

Shai Shalev-Shwartz, Jerusalem, Israel

Shai Ben-David, Waterloo, Canada

Contents

Preface page vii

1 Introduction 19

1.1 What Is Learning? 19

1.2 When Do We Need Machine Learning? 21

1.3 Types of Learning 22

1.4 Relations to Other Fields 24

1.5 How to Read This Book 25

1.5.1 Possible Course Plans Based on This Book 26

1.6 Notation 27

Part I Foundations 31

2 A Gentle Start 33

2.1 A Formal Model – The Statistical Learning Framework 33

2.2 Empirical Risk Minimization 35

2.2.1 Something May Go Wrong – Overfitting 35

2.3 Empirical Risk Minimization with Inductive Bias 36

2.3.1 Finite Hypothesis Classes 37

2.4 Exercises 41

3 A Formal Learning Model 43

3.1 PAC Learning 43

3.2 A More General Learning Model 44

3.2.1 Releasing the Realizability Assumption – Agnostic PAC

Learning 45

3.2.2 The Scope of Learning Problems Modeled 47

3.3 Summary 49

3.4 Bibliographic Remarks 50

3.5 Exercises 50

4 Learning via Uniform Convergence 54

4.1 Uniform Convergence Is Sufficient for Learnability 54

4.2 Finite Classes Are Agnostic PAC Learnable 55

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

x Contents

4.3 Summary 58

4.4 Bibliographic Remarks 58

4.5 Exercises 58

5 The Bias-Complexity Tradeoff 60

5.1 The No-Free-Lunch Theorem 61

5.1.1 No-Free-Lunch and Prior Knowledge 63

5.2 Error Decomposition 64

5.3 Summary 65

5.4 Bibliographic Remarks 66

5.5 Exercises 66

6 The VC-Dimension 67

6.1 Infinite-Size Classes Can Be Learnable 67

6.2 The VC-Dimension 68

6.3 Examples 70

6.3.1 Threshold Functions 70

6.3.2 Intervals 71

6.3.3 Axis Aligned Rectangles 71

6.3.4 Finite Classes 72

6.3.5 VC-Dimension and the Number of Parameters 72

6.4 The Fundamental Theorem of PAC learning 72

6.5 Proof of Theorem 6.7 73

6.5.1 Sauer’s Lemma and the Growth Function 73

6.5.2 Uniform Convergence for Classes of Small Effective Size 75

6.6 Summary 78

6.7 Bibliographic remarks 78

6.8 Exercises 78

7 Nonuniform Learnability 83

7.1 Nonuniform Learnability 83

7.1.1 Characterizing Nonuniform Learnability 84

7.2 Structural Risk Minimization 85

7.3 Minimum Description Length and Occam’s Razor 89

7.3.1 Occam’s Razor 91

7.4 Other Notions of Learnability – Consistency 92

7.5 Discussing the Different Notions of Learnability 93

7.5.1 The No-Free-Lunch Theorem Revisited 95

7.6 Summary 96

7.7 Bibliographic Remarks 97

7.8 Exercises 97

8 The Runtime of Learning 100

8.1 Computational Complexity of Learning 101

Contents xi

8.1.1 Formal Definition* 102

8.2 Implementing the ERM Rule 103

8.2.1 Finite Classes 104

8.2.2 Axis Aligned Rectangles 105

8.2.3 Boolean Conjunctions 106

8.2.4 Learning 3-Term DNF 107

8.3 Efficiently Learnable, but Not by a Proper ERM 107

8.4 Hardness of Learning* 108

8.5 Summary 110

8.6 Bibliographic Remarks 110

8.7 Exercises 110

Part II From Theory to Algorithms 115

9 Linear Predictors 117

9.1 Halfspaces 118

9.1.1 Linear Programming for the Class of Halfspaces 119

9.1.2 Perceptron for Halfspaces 120

9.1.3 The VC Dimension of Halfspaces 122

9.2 Linear Regression 123

9.2.1 Least Squares 124

9.2.2 Linear Regression for Polynomial Regression Tasks 125

9.3 Logistic Regression 126

9.4 Summary 128

9.5 Bibliographic Remarks 128

9.6 Exercises 128

10 Boosting 130

10.1 Weak Learnability 131

10.1.1 Efficient Implementation of ERM for Decision Stumps 133

10.2 AdaBoost 134

10.3 Linear Combinations of Base Hypotheses 137

10.3.1 The VC-Dimension of L(B, T) 139

10.4 AdaBoost for Face Recognition 140

10.5 Summary 141

10.6 Bibliographic Remarks 141

10.7 Exercises 142

11 Model Selection and Validation 144

11.1 Model Selection Using SRM 145

11.2 Validation 146

11.2.1 Hold Out Set 146

11.2.2 Validation for Model Selection 147

11.2.3 The Model-Selection Curve 148

xii Contents

11.2.4 k-Fold Cross Validation 149

11.2.5 Train-Validation-Test Split 150

11.3 What to Do If Learning Fails 151

11.4 Summary 154

11.5 Exercises 154

12 Convex Learning Problems 156

12.1 Convexity, Lipschitzness, and Smoothness 156

12.1.1 Convexity 156

12.1.2 Lipschitzness 160

12.1.3 Smoothness 162

12.2 Convex Learning Problems 163

12.2.1 Learnability of Convex Learning Problems 164

12.2.2 Convex-Lipschitz/Smooth-Bounded Learning Problems 166

12.3 Surrogate Loss Functions 167

12.4 Summary 168

12.5 Bibliographic Remarks 169

12.6 Exercises 169

13 Regularization and Stability 171

13.1 Regularized Loss Minimization 171

13.1.1 Ridge Regression 172

13.2 Stable Rules Do Not Overfit 173

13.3 Tikhonov Regularization as a Stabilizer 174

13.3.1 Lipschitz Loss 176

13.3.2 Smooth and Nonnegative Loss 177

13.4 Controlling the Fitting-Stability Tradeoff 178

13.5 Summary 180

13.6 Bibliographic Remarks 180

13.7 Exercises 181

14 Stochastic Gradient Descent 184

14.1 Gradient Descent 185

14.1.1 Analysis of GD for Convex-Lipschitz Functions 186

14.2 Subgradients 188

14.2.1 Calculating Subgradients 189

14.2.2 Subgradients of Lipschitz Functions 190

14.2.3 Subgradient Descent 190

14.3 Stochastic Gradient Descent (SGD) 191

14.3.1 Analysis of SGD for Convex-Lipschitz-Bounded Functions 191

14.4 Variants 193

14.4.1 Adding a Projection Step 193

14.4.2 Variable Step Size 194

14.4.3 Other Averaging Techniques 195

Contents xiii

14.4.4 Strongly Convex Functions* 195

14.5 Learning with SGD 196

14.5.1 SGD for Risk Minimization 196

14.5.2 Analyzing SGD for Convex-Smooth Learning Problems 198

14.5.3 SGD for Regularized Loss Minimization 199

14.6 Summary 200

14.7 Bibliographic Remarks 200

14.8 Exercises 201

15 Support Vector Machines 202

15.1 Margin and Hard-SVM 202

15.1.1 The Homogenous Case 205

15.1.2 The Sample Complexity of Hard-SVM 205

15.2 Soft-SVM and Norm Regularization 206

15.2.1 The Sample Complexity of Soft-SVM 208

15.2.2 Margin and Norm-Based Bounds versus Dimension 208

15.2.3 The Ramp Loss* 209

15.3 Optimality Conditions and “Support Vectors”* 210

15.4 Duality* 211

15.5 Implementing Soft-SVM Using SGD 212

15.6 Summary 213

15.7 Bibliographic Remarks 213

15.8 Exercises 214

16 Kernel Methods 215

16.1 Embeddings into Feature Spaces 215

16.2 The Kernel Trick 217

16.2.1 Kernels as a Way to Express Prior Knowledge 221

16.2.2 Characterizing Kernel Functions* 222

16.3 Implementing Soft-SVM with Kernels 222

16.4 Summary 224

16.5 Bibliographic Remarks 225

16.6 Exercises 225

17 Multiclass, Ranking, and Complex Prediction Problems 227

17.1 One-versus-All and All-Pairs 227

17.2 Linear Multiclass Predictors 230

17.2.1 How to Construct Ψ 230

17.2.2 Cost-Sensitive Classification 232

17.2.3 ERM 232

17.2.4 Generalized Hinge Loss 233

17.2.5 Multiclass SVM and SGD 234

17.3 Structured Output Prediction 236

17.4 Ranking 238

xiv Contents

17.4.1 Linear Predictors for Ranking 240

17.5 Bipartite Ranking and Multivariate Performance Measures 243

17.5.1 Linear Predictors for Bipartite Ranking 245

17.6 Summary 247

17.7 Bibliographic Remarks 247

17.8 Exercises 248

18 Decision Trees 250

18.1 Sample Complexity 251

18.2 Decision Tree Algorithms 252

18.2.1 Implementations of the Gain Measure 253

18.2.2 Pruning 254

18.2.3 Threshold-Based Splitting Rules for Real-Valued Features 255

18.3 Random Forests 255

18.4 Summary 256

18.5 Bibliographic Remarks 256

18.6 Exercises 256

19 Nearest Neighbor 258

19.1 k Nearest Neighbors 258

19.2 Analysis 259

19.2.1 A Generalization Bound for the 1-NN Rule 260

19.2.2 The “Curse of Dimensionality” 263

19.3 Efficient Implementation* 264

19.4 Summary 264

19.5 Bibliographic Remarks 264

19.6 Exercises 265

20 Neural Networks 268

20.1 Feedforward Neural Networks 269

20.2 Learning Neural Networks 270

20.3 The Expressive Power of Neural Networks 271

20.3.1 Geometric Intuition 273

20.4 The Sample Complexity of Neural Networks 274

20.5 The Runtime of Learning Neural Networks 276

20.6 SGD and Backpropagation 277

20.7 Summary 281

20.8 Bibliographic Remarks 281

20.9 Exercises 282

Part III Additional Learning Models 285

21 Online Learning 287

21.1 Online Classification in the Realizable Case 288

Contents xv

21.1.1 Online Learnability 290

21.2 Online Classification in the Unrealizable Case 294

21.2.1 Weighted-Majority 295

21.3 Online Convex Optimization 300

21.4 The Online Perceptron Algorithm 301

21.5 Summary 304

21.6 Bibliographic Remarks 305

21.7 Exercises 305

22 Clustering 307

22.1 Linkage-Based Clustering Algorithms 310

22.2 k-Means and Other Cost Minimization Clusterings 311

22.2.1 The k-Means Algorithm 313

22.3 Spectral Clustering 315

22.3.1 Graph Cut 315

22.3.2 Graph Laplacian and Relaxed Graph Cuts 315

22.3.3 Unnormalized Spectral Clustering 317

22.4 Information Bottleneck* 317

22.5 A High Level View of Clustering 318

22.6 Summary 320

22.7 Bibliographic Remarks 320

22.8 Exercises 320

23 Dimensionality Reduction 323

23.1 Principal Component Analysis (PCA) 324

23.1.1 A More Efficient Solution for the Case d� m 326

23.1.2 Implementation and Demonstration 326

23.2 Random Projections 329

23.3 Compressed Sensing 330

23.3.1 Proofs* 333

23.4 PCA or Compressed Sensing? 338

23.5 Summary 338

23.6 Bibliographic Remarks 339

23.7 Exercises 339

24 Generative Models 342

24.1 Maximum Likelihood Estimator 343

24.1.1 Maximum Likelihood Estimation for Continuous Ran-

dom Variables 344

24.1.2 Maximum Likelihood and Empirical Risk Minimization 345

24.1.3 Generalization Analysis 345

24.2 Naive Bayes 347

24.3 Linear Discriminant Analysis 347

24.4 Latent Variables and the EM Algorithm 348

xvi Contents

24.4.1 EM as an Alternate Maximization Algorithm 350

24.4.2 EM for Mixture of Gaussians (Soft k-Means) 352

24.5 Bayesian Reasoning 353

24.6 Summary 355

24.7 Bibliographic Remarks 355

24.8 Exercises 356

25 Feature Selection and Generation 357

25.1 Feature Selection 358

25.1.1 Filters 359

25.1.2 Greedy Selection Approaches 360

25.1.3 Sparsity-Inducing Norms 363

25.2 Feature Manipulation and Normalization 365

25.2.1 Examples of Feature Transformations 367

25.3 Feature Learning 368

25.3.1 Dictionary Learning Using Auto-Encoders 368

25.4 Summary 370

25.5 Bibliographic Remarks 371

25.6 Exercises 371

Part IV Advanced Theory 373

26 Rademacher Complexities 375

26.1 The Rademacher Complexity 375

26.1.1 Rademacher Calculus 379

26.2 Rademacher Complexity of Linear Classes 382

26.3 Generalization Bounds for SVM 383

26.4 Generalization Bounds for Predictors with Low `1 Norm 386

26.5 Bibliographic Remarks 386

27 Covering Numbers 388

27.1 Covering 388

27.1.1 Properties 388

27.2 From Covering to Rademacher Complexity via Chaining 389

27.3 Bibliographic Remarks 391

28 Proof of the Fundamental Theorem of Learning Theory 392

28.1 The Upper Bound for the Agnostic Case 392

28.2 The Lower Bound for the Agnostic Case 393

28.2.1 Showing That m(ε, δ) ≥ 0.5 log(1/(4δ))/ε2 393

28.2.2 Showing That m(ε, 1/8) ≥ 8d/ε2 395

28.3 The Upper Bound for the Realizable Case 398

28.3.1 From ε-Nets to PAC Learnability 401

Contents xvii

29 Multiclass Learnability 402

29.1 The Natarajan Dimension 402

29.2 The Multiclass Fundamental Theorem 403

29.2.1 On the Proof of Theorem 29.3 403

29.3 Calculating the Natarajan Dimension 404

29.3.1 One-versus-All Based Classes 404

29.3.2 General Multiclass-to-Binary Reductions 405

29.3.3 Linear Multiclass Predictors 405

29.4 On Good and Bad ERMs 406

29.5 Bibliographic Remarks 408

29.6 Exercises 409

30 Compression Bounds 410

30.1 Compression Bounds 410

30.2 Examples 412

30.2.1 Axis Aligned Rectangles 412

30.2.2 Halfspaces 412

30.2.3 Separating Polynomials 413

30.2.4 Separation with Margin 414

30.3 Bibliographic Remarks 414

31 PAC-Bayes 415

31.1 PAC-Bayes Bounds 415

31.2 Bibliographic Remarks 417

31.3 Exercises 417

Appendix A Technical Lemmas 419

Appendix B Measure Concentration 422

Appendix C Linear Algebra 430

Notes 435

References 437

Index 447

1 Introduction

The subject of this book is automated learning, or, as we will more often call

it, Machine Learning (ML). That is, we wish to program computers so that

they can “learn” from input available to them. Roughly speaking, learning is

the process of converting experience into expertise or knowledge. The input to

a learning algorithm is training data, representing experience, and the output

is some expertise, which usually takes the form of another computer program

that can perform some task. Seeking a formal-mathematical understanding of

this concept, we’ll have to be more explicit about what we mean by each of the

involved terms: What is the training data our programs will access? How can

the process of learning be automated? How can we evaluate the success of such

a process (namely, the quality of the output of a learning program)?

1.1 What Is Learning?

Let us begin by considering a couple of examples from naturally occurring ani-

mal learning. Some of the most fundamental issues in ML arise already in that

context, which we are all familiar with.

Bait Shyness – Rats Learning to Avoid Poisonous Baits: When rats encounter

food items with novel look or smell, they will first eat very small amounts, and

subsequent feeding will depend on the flavor of the food and its physiological

effect. If the food produces an ill effect, the novel food will often be associated

with the illness, and subsequently, the rats will not eat it. Clearly, there is a

learning mechanism in play here – the animal used past experience with some

food to acquire expertise in detecting the safety of this food. If past experience

with the food was negatively labeled, the animal predicts that it will also have

a negative effect when encountered in the future.

Inspired by the preceding example of successful learning, let us demonstrate a

typical machine learning task. Suppose we would like to program a machine that

learns how to filter spam e-mails. A naive solution would be seemingly similar

to the way rats learn how to avoid poisonous baits. The machine will simply

memorize all previous e-mails that had been labeled as spam e-mails by the

human user. When a new e-mail arrives, the machine will search for it in the set

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

20 Introduction

of previous spam e-mails. If it matches one of them, it will be trashed. Otherwise,

it will be moved to the user’s inbox folder.

While the preceding “learning by memorization” approach is sometimes use-

ful, it lacks an important aspect of learning systems – the ability to label unseen

e-mail messages. A successful learner should be able to progress from individual

examples to broader generalization. This is also referred to as inductive reasoning

or inductive inference. In the bait shyness example presented previously, after

the rats encounter an example of a certain type of food, they apply their attitude

toward it on new, unseen examples of food of similar smell and taste. To achieve

generalization in the spam filtering task, the learner can scan the previously seen

e-mails, and extract a set of words whose appearance in an e-mail message is

indicative of spam. Then, when a new e-mail arrives, the machine can check

whether one of the suspicious words appears in it, and predict its label accord-

ingly. Such a system would potentially be able correctly to predict the label of

unseen e-mails.

However, inductive reasoning might lead us to false conclusions. To illustrate

this, let us consider again an example from animal learning.

Pigeon Superstition: In an experiment performed by the psychologist B. F. Skinner,

he placed a bunch of hungry pigeons in a cage. An automatic mechanism had

been attached to the cage, delivering food to the pigeons at regular intervals

with no reference whatsoever to the birds’ behavior. The hungry pigeons went

around the cage, and when food was first delivered, it found each pigeon engaged

in some activity (pecking, turning the head, etc.). The arrival of food reinforced

each bird’s specific action, and consequently, each bird tended to spend some

more time doing that very same action. That, in turn, increased the chance that

the next random food delivery would find each bird engaged in that activity

again. What results is a chain of events that reinforces the pigeons’ association

of the delivery of the food with whatever chance actions they had been perform-

ing when it was first delivered. They subsequently continue to perform these

same actions diligently.1

What distinguishes learning mechanisms that result in superstition from useful

learning? This question is crucial to the development of automated learners.

While human learners can rely on common sense to filter out random meaningless

learning conclusions, once we export the task of learning to a machine, we must

provide well defined crisp principles that will protect the program from reaching

senseless or useless conclusions. The development of such principles is a central

goal of the theory of machine learning.

What, then, made the rats’ learning more successful than that of the pigeons?

As a first step toward answering this question, let us have a closer look at the

bait shyness phenomenon in rats.

Bait Shyness revisited – rats fail to acquire conditioning between food and

electric shock or between sound and nausea: The bait shyness mechanism in

1 See: http://psychclassics.yorku.ca/Skinner/Pigeon

1.2 When Do We Need Machine Learning? 21

rats turns out to be more complex than what one may expect. In experiments

carried out by Garcia (Garcia & Koelling 1996), it was demonstrated that if the

unpleasant stimulus that follows food consumption is replaced by, say, electrical

shock (rather than nausea), then no conditioning occurs. Even after repeated

trials in which the consumption of some food is followed by the administration of

unpleasant electrical shock, the rats do not tend to avoid that food. Similar failure

of conditioning occurs when the characteristic of the food that implies nausea

(such as taste or smell) is replaced by a vocal signal. The rats seem to have

some “built in” prior knowledge telling them that, while temporal correlation

between food and nausea can be causal, it is unlikely that there would be a

causal relationship between food consumption and electrical shocks or between

sounds and nausea.

We conclude that one distinguishing feature between the bait shyness learning

and the pigeon superstition is the incorporation of prior knowledge that biases

the learning mechanism. This is also referred to as inductive bias. The pigeons in

the experiment are willing to adopt any explanation for the occurrence of food.

However, the rats “know” that food cannot cause an electric shock and that the

co-occurrence of noise with some food is not likely to affect the nutritional value

of that food. The rats’ learning process is biased toward detecting some kind of

patterns while ignoring other temporal correlations between events.

It turns out that the incorporation of prior knowledge, biasing the learning

process, is inevitable for the success of learning algorithms (this is formally stated

and proved as the “No-Free-Lunch theorem” in Chapter 5). The development of

tools for expressing domain expertise, translating it into a learning bias, and

quantifying the effect of such a bias on the success of learning is a central theme

of the theory of machine learning. Roughly speaking, the stronger the prior

knowledge (or prior assumptions) that one starts the learning process with, the

easier it is to learn from further examples. However, the stronger these prior

assumptions are, the less flexible the learning is – it is bound, a priori, by the

commitment to these assumptions. We shall discuss these issues explicitly in

Chapter 5.

1.2 When Do We Need Machine Learning?

When do we need machine learning rather than directly program our computers

to carry out the task at hand? Two aspects of a given problem may call for the

use of programs that learn and improve on the basis of their “experience”: the

problem’s complexity and the need for adaptivity.

Tasks That Are Too Complex to Program.

• Tasks Performed by Animals/Humans: There are numerous tasks that

we human beings perform routinely, yet our introspection concern-

ing how we do them is not sufficiently elaborate to extract a well

22 Introduction

defined program. Examples of such tasks include driving, speech

recognition, and image understanding. In all of these tasks, state

of the art machine learning programs, programs that “learn from

their experience,” achieve quite satisfactory results, once exposed

to sufficiently many training examples.

• Tasks beyond Human Capabilities: Another wide family of tasks that

benefit from machine learning techniques are related to the analy-

sis of very large and complex data sets: astronomical data, turning

medical archives into medical knowledge, weather prediction, anal-

ysis of genomic data, Web search engines, and electronic commerce.

With more and more available digitally recorded data, it becomes

obvious that there are treasures of meaningful information buried

in data archives that are way too large and too complex for humans

to make sense of. Learning to detect meaningful patterns in large

and complex data sets is a promising domain in which the combi-

nation of programs that learn with the almost unlimited memory

capacity and ever increasing processing speed of computers opens

up new horizons.

Adaptivity. One limiting feature of programmed tools is their rigidity – once

the program has been written down and installed, it stays unchanged.

However, many tasks change over time or from one user to another.

Machine learning tools – programs whose behavior adapts to their input

data – offer a solution to such issues; they are, by nature, adaptive

to changes in the environment they interact with. Typical successful

applications of machine learning to such problems include programs that

decode handwritten text, where a fixed program can adapt to variations

between the handwriting of different users; spam detection programs,

adapting automatically to changes in the nature of spam e-mails; and

speech recognition programs.

1.3 Types of Learning

Learning is, of course, a very wide domain. Consequently, the field of machine

learning has branched into several subfields dealing with different types of learn-

ing tasks. We give a rough taxonomy of learning paradigms, aiming to provide

some perspective of where the content of this book sits within the wide field of

machine learning.

We describe four parameters along which learning paradigms can be classified.

Supervised versus Unsupervised Since learning involves an interaction be-

tween the learner and the environment, one can divide learning tasks

according to the nature of that interaction. The first distinction to note

is the difference between supervised and unsupervised learning. As an

1.3 Types of Learning 23

illustrative example, consider the task of learning to detect spam e-mail

versus the task of anomaly detection. For the spam detection task, we

consider a setting in which the learner receives training e-mails for which

the label spam/not-spam is provided. On the basis of such training the

learner should figure out a rule for labeling a newly arriving e-mail mes-

sage. In contrast, for the task of anomaly detection, all the learner gets

as training is a large body of e-mail messages (with no labels) and the

learner’s task is to detect “unusual” messages.

More abstractly, viewing learning as a process of “using experience

to gain expertise,” supervised learning describes a scenario in which the

“experience,” a training example, contains significant information (say,

the spam/not-spam labels) that is missing in the unseen “test examples”

to which the learned expertise is to be applied. In this setting, the ac-

quired expertise is aimed to predict that missing information for the test

data. In such cases, we can think of the environment as a teacher that

“supervises” the learner by providing the extra information (labels). In

unsupervised learning, however, there is no distinction between training

and test data. The learner processes input data with the goal of coming

up with some summary, or compressed version of that data. Clustering

a data set into subsets of similar objets is a typical example of such a

task.

There is also an intermediate learning setting in which, while the

training examples contain more information than the test examples, the

learner is required to predict even more information for the test exam-

ples. For example, one may try to learn a value function that describes for

each setting of a chess board the degree by which White’s position is bet-

ter than the Black’s. Yet, the only information available to the learner at

training time is positions that occurred throughout actual chess games,

labeled by who eventually won that game. Such learning frameworks are

mainly investigated under the title of reinforcement learning.

Active versus Passive Learners Learning paradigms can vary by the role

played by the learner. We distinguish between “active” and “passive”

learners. An active learner interacts with the environment at training

time, say, by posing queries or performing experiments, while a passive

learner only observes the information provided by the environment (or

the teacher) without influencing or directing it. Note that the learner of a

spam filter is usually passive – waiting for users to mark the e-mails com-

ing to them. In an active setting, one could imagine asking users to label

specific e-mails chosen by the learner, or even composed by the learner, to

enhance its understanding of what

spam is.

Helpfulness of the Teacher When one thinks about human learning, of a

baby at home or a student at school, the process often involves a helpful

teacher, who is trying to feed the learner with the information most use-

24 Introduction

ful for achieving the learning goal. In contrast, when a scientist learns

about nature, the environment, playing the role of the teacher, can be

best thought of as passive – apples drop, stars shine, and the rain falls

without regard to the needs of the learner. We model such learning sce-

narios by postulating that the training data (or the learner’s experience)

is generated by some random process. This is the basic building block in

the branch of “statistical learning.” Finally, learning also occurs when

the learner’s input is generated by an adversarial “teacher.” This may be

the case in the spam filtering example (if the spammer makes an effort

to mislead the spam filtering designer) or in learning to detect fraud.

One also uses an adversarial teacher model as a worst-case scenario,

when no milder setup can be safely assumed. If you can learn against an

adversarial teacher, you are guaranteed to succeed interacting any odd

teacher.

Online versus Batch Learning Protocol The last parameter we mention is

the distinction between situations in which the learner has to respond

online, throughout the learning process, and settings in which the learner

has to engage the acquired expertise only after having a chance to process

large amounts of data. For example, a stockbroker has to make daily

decisions, based on the experience collected so far. He may become an

expert over time, but might have made costly mistakes in the process. In

contrast, in many data mining settings, the learner – the data miner –

has large amounts of training data to play with before having to output

conclusions.

In this book we shall discuss only a subset of the possible learning paradigms.

Our main focus is on supervised statistical batch learning with a passive learner

(for example, trying to learn how to generate patients’ prognoses, based on large

archives of records of patients that were independently collected and are already

labeled by the fate of the recorded patients). We shall also briefly discuss online

learning and batch unsupervised learning (in particular, clustering).

1.4 Relations to Other Fields

As an interdisciplinary field, machine learning shares common threads with the

mathematical fields of statistics, information theory, game theory, and optimiza-

tion. It is naturally a subfield of computer science, as our goal is to program

machines so that they will learn. In a sense, machine learning can be viewed as

a branch of AI (Artificial Intelligence), since, after all, the ability to turn expe-

rience into expertise or to detect meaningful patterns in complex sensory data

is a cornerstone of human (and animal) intelligence. However, one should note

that, in contrast with traditional AI, machine learning is not trying to build

automated imitation of intelligent behavior, but rather to use the strengths and

1.5 How to Read This Book 25

special abilities of computers to complement human intelligence, often perform-

ing tasks that fall way beyond human capabilities. For example, the ability to

scan and process huge databases allows machine learning programs to detect

patterns that are outside the scope of human perception.

The component of experience, or training, in machine learning often refers

to data that is randomly generated. The task of the learner is to process such

randomly generated examples toward drawing conclusions that hold for the en-

vironment from which these examples are picked. This description of machine

learning highlights its close relationship with statistics. Indeed there is a lot in

common between the two disciplines, in terms of both the goals and techniques

used. There are, however, a few significant differences of emphasis; if a doctor

comes up with the hypothesis that there is a correlation between smoking and

heart disease, it is the statistician’s role to view samples of patients and check

the validity of that hypothesis (this is the common statistical task of hypothe-

sis testing). In contrast, machine learning aims to use the data gathered from

samples of patients to come up with a description of the causes of heart disease.

The hope is that automated techniques may be able to figure out meaningful

patterns (or hypotheses) that may have been missed by the human observer.

In contrast with traditional statistics, in machine learning in general, and

in this book in particular, algorithmic considerations play a major role. Ma-

chine learning is about the execution of learning by computers; hence algorith-

mic issues are pivotal. We develop algorithms to perform the learning tasks and

are concerned with their computational efficiency. Another difference is that

while statistics is often interested in asymptotic behavior (like the convergence

of sample-based statistical estimates as the sample sizes grow to infinity), the

theory of machine learning focuses on finite sample bounds. Namely, given the

size of available samples, machine learning theory aims to figure out the degree

of accuracy that a learner can expect on the basis of such samples.

There are further differences between these two disciplines, of which we shall

mention only one more here. While in statistics it is common to work under the

assumption of certain presubscribed data models (such as assuming the normal-

ity of data-generating distributions, or the linearity of functional dependencies),

in machine learning the emphasis is on working under a “distribution-free” set-

ting, where the learner assumes as little as possible about the nature of the

data distribution and allows the learning algorithm to figure out which models

best approximate the data-generating process. A precise discussion of this issue

requires some technical preliminaries, and we will come back to it later in the

book, and in particular in Chapter 5.

1.5 How to Read This Book

The first part of the book provides the basic theoretical principles that underlie

machine learning (ML). In a sense, this is the foundation upon which the rest

26 Introduction

of the book is built. This part could serve as a basis for a minicourse on the

theoretical foundations of ML.

The second part of the book introduces the most commonly used algorithmic

approaches to supervised machine learning. A subset of these chapters may also

be used for introducing machine learning in a general AI course to computer

science, Math, or engineering students.

The third part of the book extends the scope of discussion from statistical

classification to other learning models. It covers online learning, unsupervised

learning, dimensionality reduction, generative models, and feature learning.

The fourth part of the book, Advanced Theory, is geared toward readers who

have interest in research and provides the more technical mathematical tech-

niques that serve to analyze and drive forward the field of theoretical machine

learning.

The Appendixes provide some technical tools used in the book. In particular,

we list basic results from measure concentration and linear algebra.

A few sections are marked by an asterisk, which means they are addressed to

more advanced students. Each chapter is concluded with a list of exercises. A

solution manual is provided in the course Web site.

1.5.1 Possible Course Plans Based on This Book

A 14 Week Introduction Course for Graduate Students:

1. Chapters 2–4.

2. Chapter 9 (without the VC calculation).

3. Chapters 5–6 (without proofs).

4. Chapter 10.

5. Chapters 7, 11 (without proofs).

6. Chapters 12, 13 (with some of the easier proofs).

7. Chapter 14 (with some of the easier proofs).

8. Chapter 15.

9. Chapter 16.

10. Chapter 18.

11. Chapter 22.

12. Chapter 23 (without proofs for compressed sensing).

13. Chapter 24.

14. Chapter 25.

A 14 Week Advanced Course for Graduate Students:

1. Chapters 26, 27.

2. (continued)

3. Chapters 6, 28.

4. Chapter 7.

5. Chapter 31.

1.6 Notation 27

6. Chapter 30.

7. Chapters 12, 13.

8. Chapter 14.

9. Chapter 8.

10. Chapter 17.

11. Chapter 29.

12. Chapter 19.

13. Chapter 20.

14. Chapter 21.

1.6 Notation

Most of the notation we use throughout the book is either standard or defined

on the spot. In this section we describe our main conventions and provide a

table summarizing our notation (Table 1.1). The reader is encouraged to skip

this section and return to it if during the reading of the book some notation is

unclear.

We denote scalars and abstract objects with lowercase letters (e.g. x and λ).

Often, we would like to emphasize that some object is a vector and then we

use boldface letters (e.g. x and λ). The ith element of a vector x is denoted

by xi. We use uppercase letters to denote matrices, sets, and sequences. The

meaning should be clear from the context. As we will see momentarily, the input

of a learning algorithm is a sequence of training examples. We denote by z an

abstract example and by S = z1, . . . , zm a sequence of m examples. Historically,

S is often referred to as a training set ; however, we will always assume that S is

a sequence rather than a set. A sequence of m vectors is denoted by x1, . . . ,xm.

The ith element of xt is denoted by xt,i.

Throughout the book, we make use of basic notions from probability. We

denote by D a distribution over some set,2 for example, Z. We use the notation

z ∼ D to denote that z is sampled according to D. Given a random variable

f : Z → R, its expected value is denoted by Ez∼D[f(z)]. We sometimes use the

shorthand E[f] when the dependence on z is clear from the context. For f : Z →
{true, false} we also use Pz∼D[f(z)] to denote D({z : f(z) = true}). In the

next chapter we will also introduce the notation Dm to denote the probability

over Zm induced by sampling (z1, . . . , zm) where each point zi is sampled from

D independently of the other points.

In general, we have made an effort to avoid asymptotic notation. However, we

occasionally use it to clarify the main results. In particular, given f : R → R+

and g : R → R+ we write f = O(g) if there exist x0, α ∈ R+ such that for all

x > x0 we have f(x) ≤ αg(x). We write f = o(g) if for every α > 0 there exists

2 To be mathematically precise, D should be defined over some σ-algebra of subsets of Z.

The user who is not familiar with measure theory can skip the few footnotes and remarks
regarding more formal measurability definitions and assumptions.

28 Introduction

Table 1.1 Summary of notation

symbol meaning

R the set of real numbers

Rd the set of d-dimensional vectors over R
R+ the set of non-negative real numbers
N the set of natural numbers

O, o,Θ, ω,Ω, Õ asymptotic notation (see text)
1[Boolean expression] indicator function (equals 1 if expression is true and 0 o.w.)
[a]+ = max{0, a}
[n] the set {1, . . . , n} (for n ∈ N)
x,v,w (column) vectors
xi, vi, wi the ith element of a vector

〈x,v〉 =
∑d
i=1 xivi (inner product)

‖x‖2 or ‖x‖ =
√
〈x,x〉 (the `2 norm of x)

‖x‖1 =
∑d
i=1 |xi| (the `1 norm of x)

‖x‖∞ = maxi |xi| (the `∞ norm of x)
‖x‖0 the number of nonzero elements of x

A ∈ Rd,k a d× k matrix over R
A> the transpose of A
Ai,j the (i, j) element of A

xx> the d× d matrix A s.t. Ai,j = xixj (where x ∈ Rd)
x1, . . . ,xm a sequence of m vectors
xi,j the jth element of the ith vector in the sequence

w(1), . . . ,w(T) the values of a vector w during an iterative algorithm

w
(t)
i the ith element of the vector w(t)

X instances domain (a set)
Y labels domain (a set)
Z examples domain (a set)
H hypothesis class (a set)
` : H× Z → R+ loss function
D a distribution over some set (usually over Z or over X)
D(A) the probability of a set A ⊆ Z according to D
z ∼ D sampling z according to D
S = z1, . . . , zm a sequence of m examples
S ∼ Dm sampling S = z1, . . . , zm i.i.d. according to D
P,E probability and expectation of a random variable
Pz∼D[f(z)] = D({z : f(z) = true}) for f : Z → {true, false}
Ez∼D[f(z)] expectation of the random variable f : Z → R
N(µ, C) Gaussian distribution with expectation µ and covariance C
f ′(x) the derivative of a function f : R→ R at x
f ′′(x) the second derivative of a function f : R→ R at x
∂f(w)
∂wi

the partial derivative of a function f : Rd → R at w w.r.t. wi

∇f(w) the gradient of a function f : Rd → R at w

∂f(w) the differential set of a function f : Rd → R at w
minx∈C f(x) = min{f(x) : x ∈ C} (minimal value of f over C)
maxx∈C f(x) = max{f(x) : x ∈ C} (maximal value of f over C)
argminx∈C f(x) the set {x ∈ C : f(x) = minz∈C f(z)}
argmaxx∈C f(x) the set {x ∈ C : f(x) = maxz∈C f(z)}
log the natural logarithm

1.6 Notation 29

x0 such that for all x > x0 we have f(x) ≤ αg(x). We write f = Ω(g) if there

exist x0, α ∈ R+ such that for all x > x0 we have f(x) ≥ αg(x). The notation

f = ω(g) is defined analogously. The notation f = Θ(g) means that f = O(g)

and g = O(f). Finally, the notation f = Õ(g) means that there exists k ∈ N
such that f(x) = O(g(x) logk(g(x))).

The inner product between vectors x and w is denoted by 〈x,w〉. Whenever we

do not specify the vector space we assume that it is the d-dimensional Euclidean

space and then 〈x,w〉 =
∑d
i=1 xiwi. The Euclidean (or `2) norm of a vector w is

‖w‖2 =
√
〈w,w〉. We omit the subscript from the `2 norm when it is clear from

the context. We also use other `p norms, ‖w‖p = (
∑
i |wi|p)

1/p
, and in particular

‖w‖1 =
∑
i |wi| and ‖w‖∞ = maxi |wi|.

We use the notation minx∈C f(x) to denote the minimum value of the set

{f(x) : x ∈ C}. To be mathematically more precise, we should use infx∈C f(x)

whenever the minimum is not achievable. However, in the context of this book

the distinction between infimum and minimum is often of little interest. Hence,

to simplify the presentation, we sometimes use the min notation even when inf

is more adequate. An analogous remark applies to max versus sup.

Part I

Foundations

2 A Gentle Start

Let us begin our mathematical analysis by showing how successful learning can be

achieved in a relatively simplified setting. Imagine you have just arrived in some

small Pacific island. You soon find out that papayas are a significant ingredient

in the local diet. However, you have never before tasted papayas. You have to

learn how to predict whether a papaya you see in the market is tasty or not.

First, you need to decide which features of a papaya your prediction should be

based on. On the basis of your previous experience with other fruits, you decide

to use two features: the papaya’s color, ranging from dark green, through orange

and red to dark brown, and the papaya’s softness, ranging from rock hard to

mushy. Your input for figuring out your prediction rule is a sample of papayas

that you have examined for color and softness and then tasted and found out

whether they were tasty or not. Let us analyze this task as a demonstration of

the considerations involved in learning problems.

Our first step is to describe a formal model aimed to capture such learning

tasks.

2.1 A Formal Model – The Statistical Learning Framework

• The learner’s input: In the basic statistical learning setting, the learner has

access to the following:

– Domain set: An arbitrary set, X . This is the set of objects that we

may wish to label. For example, in the papaya learning problem men-

tioned before, the domain set will be the set of all papayas. Usually,

these domain points will be represented by a vector of features (like

the papaya’s color and softness). We also refer to domain points as

instances and to X as instance space.

– Label set: For our current discussion, we will restrict the label set to

be a two-element set, usually {0, 1} or {−1,+1}. Let Y denote our

set of possible labels. For our papayas example, let Y be {0, 1}, where

1 represents being tasty and 0 stands for being not-tasty.

– Training data: S = ((x1, y1) . . . (xm, ym)) is a finite sequence of pairs in

X ×Y: that is, a sequence of labeled domain points. This is the input

that the learner has access to (like a set of papayas that have been

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

34 A Gentle Start

tasted and their color, softness, and tastiness). Such labeled examples

are often called training examples. We sometimes also refer to S as a

training set.1

• The learner’s output: The learner is requested to output a prediction rule,

h : X → Y. This function is also called a predictor, a hypothesis, or a clas-

sifier. The predictor can be used to predict the label of new domain points.

In our papayas example, it is a rule that our learner will employ to predict

whether future papayas he examines in the farmers’ market are going to

be tasty or not. We use the notation A(S) to denote the hypothesis that a

learning algorithm, A, returns upon receiving the training sequence S.

• A simple data-generation model We now explain how the training data is

generated. First, we assume that the instances (the papayas we encounter)

are generated by some probability distribution (in this case, representing

the environment). Let us denote that probability distribution over X by

D. It is important to note that we do not assume that the learner knows

anything about this distribution. For the type of learning tasks we discuss,

this could be any arbitrary probability distribution. As to the labels, in the

current discussion we assume that there is some “correct” labeling function,

f : X → Y, and that yi = f(xi) for all i. This assumption will be relaxed in

the next chapter. The labeling function is unknown to the learner. In fact,

this is just what the learner is trying to figure out. In summary, each pair

in the training data S is generated by first sampling a point xi according

to D and then labeling it by f .

• Measures of success: We define the error of a classifier to be the probability

that it does not predict the correct label on a random data point generated

by the aforementioned underlying distribution. That is, the error of h is

the probability to draw a random instance x, according to the distribution

D, such that h(x) does not equal f(x).

Formally, given a domain subset,2 A ⊂ X , the probability distribution,

D, assigns a number, D(A), which determines how likely it is to observe a

point x ∈ A. In many cases, we refer to A as an event and express it using

a function π : X → {0, 1}, namely, A = {x ∈ X : π(x) = 1}. In that case,

we also use the notation Px∼D[π(x)] to express D(A).

We define the error of a prediction rule, h : X → Y, to be

LD,f (h)
def
= P

x∼D
[h(x) 6= f(x)]

def
= D({x : h(x) 6= f(x)}). (2.1)

That is, the error of such h is the probability of randomly choosing an

example x for which h(x) 6= f(x). The subscript (D, f) indicates that the

error is measured with respect to the probability distribution D and the

1 Despite the “set” notation, S is a sequence. In particular, the same example may appear
twice in S and some algorithms can take into account the order of examples in S.

2 Strictly speaking, we should be more careful and require that A is a member of some

σ-algebra of subsets of X , over which D is defined. We will formally define our
measurability assumptions in the next chapter.

2.2 Empirical Risk Minimization 35

correct labeling function f . We omit this subscript when it is clear from

the context. L(D,f)(h) has several synonymous names such as the general-

ization error, the risk, or the true error of h, and we will use these names

interchangeably throughout the book. We use the letter L for the error,

since we view this error as the loss of the learner. We will later also discuss

other possible formulations of such loss.

• A note about the information available to the learner The learner is

blind to the underlying distribution D over the world and to the labeling

function f. In our papayas example, we have just arrived in a new island

and we have no clue as to how papayas are distributed and how to predict

their tastiness. The only way the learner can interact with the environment

is through observing the training set.

In the next section we describe a simple learning paradigm for the preceding

setup and analyze its performance.

2.2 Empirical Risk Minimization

As mentioned earlier, a learning algorithm receives as input a training set S,

sampled from an unknown distribution D and labeled by some target function

f , and should output a predictor hS : X → Y (the subscript S emphasizes the

fact that the output predictor depends on S). The goal of the algorithm is to

find hS that minimizes the error with respect to the unknown D and f .

Since the learner does not know what D and f are, the true error is not directly

available to the learner. A useful notion of error that can be calculated by the

learner is the training error – the error the classifier incurs over the training

sample:

LS(h)
def
=
|{i ∈ [m] : h(xi) 6= yi}|

m
, (2.2)

where [m] = {1, . . . ,m}.
The terms empirical error and empirical risk are often used interchangeably

for this error.

Since the training sample is the snapshot of the world that is available to the

learner, it makes sense to search for a solution that works well on that data.

This learning paradigm – coming up with a predictor h that minimizes LS(h) –

is called Empirical Risk Minimization or ERM for short.

2.2.1 Something May Go Wrong – Overfitting

Although the ERM rule seems very natural, without being careful, this approach

may fail miserably.

To demonstrate such a failure, let us go back to the problem of learning to

36 A Gentle Start

predict the taste of a papaya on the basis of its softness and color. Consider a

sample as depicted in the following:

Assume that the probability distribution D is such that instances are distributed

uniformly within the gray square and the labeling function, f , determines the

label to be 1 if the instance is within the inner blue square, and 0 otherwise. The

area of the gray square in the picture is 2 and the area of the blue square is 1.

Consider the following predictor:

hS(x) =

{
yi if ∃i ∈ [m] s.t. xi = x

0 otherwise.
(2.3)

While this predictor might seem rather artificial, in Exercise 1 we show a natural

representation of it using polynomials. Clearly, no matter what the sample is,

LS(hS) = 0, and therefore this predictor may be chosen by an ERM algorithm (it

is one of the empirical-minimum-cost hypotheses; no classifier can have smaller

error). On the other hand, the true error of any classifier that predicts the label

1 only on a finite number of instances is, in this case, 1/2. Thus, LD(hS) = 1/2.

We have found a predictor whose performance on the training set is excellent,

yet its performance on the true “world” is very poor. This phenomenon is called

overfitting. Intuitively, overfitting occurs when our hypothesis fits the training

data “too well” (perhaps like the everyday experience that a person who provides

a perfect detailed explanation for each of his single actions may raise suspicion).

2.3 Empirical Risk Minimization with Inductive Bias

We have just demonstrated that the ERM rule might lead to overfitting. Rather

than giving up on the ERM paradigm, we will look for ways to rectify it. We will

search for conditions under which there is a guarantee that ERM does not overfit,

namely, conditions under which when the ERM predictor has good performance

with respect to the training data, it is also highly likely to perform well over the

underlying data distribution.

A common solution is to apply the ERM learning rule over a restricted search

space. Formally, the learner should choose in advance (before seeing the data) a

set of predictors. This set is called a hypothesis class and is denoted by H. Each

h ∈ H is a function mapping from X to Y. For a given class H, and a training

sample, S, the ERMH learner uses the ERM rule to choose a predictor h ∈ H,

2.3 Empirical Risk Minimization with Inductive Bias 37

with the lowest possible error over S. Formally,

ERMH(S) ∈ argmin
h∈H

LS(h),

where argmin stands for the set of hypotheses in H that achieve the minimum

value of LS(h) over H. By restricting the learner to choosing a predictor from

H, we bias it toward a particular set of predictors. Such restrictions are often

called an inductive bias. Since the choice of such a restriction is determined

before the learner sees the training data, it should ideally be based on some

prior knowledge about the problem to be learned. For example, for the papaya

taste prediction problem we may choose the class H to be the set of predictors

that are determined by axis aligned rectangles (in the space determined by the

color and softness coordinates). We will later show that ERMH over this class is

guaranteed not to overfit. On the other hand, the example of overfitting that we

have seen previously, demonstrates that choosing H to be a class of predictors

that includes all functions that assign the value 1 to a finite set of domain points

does not suffice to guarantee that ERMH will not overfit.

A fundamental question in learning theory is, over which hypothesis classes

ERMH learning will not result in overfitting. We will study this question later

in the book.

Intuitively, choosing a more restricted hypothesis class better protects us

against overfitting but at the same time might cause us a stronger inductive

bias. We will get back to this fundamental tradeoff later.

2.3.1 Finite Hypothesis Classes

The simplest type of restriction on a class is imposing an upper bound on its size

(that is, the number of predictors h in H). In this section, we show that if H is

a finite class then ERMH will not overfit, provided it is based on a sufficiently

large training sample (this size requirement will depend on the size of H).

Limiting the learner to prediction rules within some finite hypothesis class may

be considered as a reasonably mild restriction. For example, H can be the set of

all predictors that can be implemented by a C++ program written in at most

109 bits of code. In our papayas example, we mentioned previously the class of

axis aligned rectangles. While this is an infinite class, if we discretize the repre-

sentation of real numbers, say, by using a 64 bits floating-point representation,

the hypothesis class becomes a finite class.

Let us now analyze the performance of the ERMH learning rule assuming that

H is a finite class. For a training sample, S, labeled according to some f : X → Y,

let hS denote a result of applying ERMH to S, namely,

hS ∈ argmin
h∈H

LS(h). (2.4)

In this chapter, we make the following simplifying assumption (which will be

relaxed in the next chapter).

38 A Gentle Start

definition 2.1 (The Realizability Assumption) There exists h? ∈ H s.t.

L(D,f)(h
?) = 0. Note that this assumption implies that with probability 1 over

random samples, S, where the instances of S are sampled according to D and

are labeled by f , we have LS(h?) = 0.

The realizability assumption implies that for every ERM hypothesis we have

that3 LS(hS) = 0. However, we are interested in the true risk of hS , L(D,f)(hS),

rather than its empirical risk.

Clearly, any guarantee on the error with respect to the underlying distribution,

D, for an algorithm that has access only to a sample S should depend on the

relationship between D and S. The common assumption in statistical machine

learning is that the training sample S is generated by sampling points from the

distribution D independently of each other. Formally,

• The i.i.d. assumption: The examples in the training set are independently

and identically distributed (i.i.d.) according to the distribution D. That is,

every xi in S is freshly sampled according to D and then labeled according

to the labeling function, f . We denote this assumption by S ∼ Dm where

m is the size of S, and Dm denotes the probability over m-tuples induced

by applying D to pick each element of the tuple independently of the other

members of the tuple.

Intuitively, the training set S is a window through which the learner

gets partial information about the distribution D over the world and the

labeling function, f . The larger the sample gets, the more likely it is to

reflect more accurately the distribution and labeling used to generate it.

Since L(D,f)(hS) depends on the training set, S, and that training set is picked

by a random process, there is randomness in the choice of the predictor hS
and, consequently, in the risk L(D,f)(hS). Formally, we say that it is a random

variable. It is not realistic to expect that with full certainty S will suffice to

direct the learner toward a good classifier (from the point of view of D), as

there is always some probability that the sampled training data happens to

be very nonrepresentative of the underlying D. If we go back to the papaya

tasting example, there is always some (small) chance that all the papayas we

have happened to taste were not tasty, in spite of the fact that, say, 70% of the

papayas in our island are tasty. In such a case, ERMH(S) may be the constant

function that labels every papaya as “not tasty” (and has 70% error on the true

distribution of papapyas in the island). We will therefore address the probability

to sample a training set for which L(D,f)(hS) is not too large. Usually, we denote

the probability of getting a nonrepresentative sample by δ, and call (1 − δ) the

confidence parameter of our prediction.

On top of that, since we cannot guarantee perfect label prediction, we intro-

duce another parameter for the quality of prediction, the accuracy parameter,

3 Mathematically speaking, this holds with probability 1. To simplify the presentation, we
sometimes omit the “with probability 1” specifier.

2.3 Empirical Risk Minimization with Inductive Bias 39

commonly denoted by ε. We interpret the event L(D,f)(hS) > ε as a failure of the

learner, while if L(D,f)(hS) ≤ ε we view the output of the algorithm as an approx-

imately correct predictor. Therefore (fixing some labeling function f : X → Y),

we are interested in upper bounding the probability to sample m-tuple of in-

stances that will lead to failure of the learner. Formally, let S|x = (x1, . . . , xm)

be the instances of the training set. We would like to upper bound

Dm({S|x : L(D,f)(hS) > ε}).

Let HB be the set of “bad” hypotheses, that is,

HB = {h ∈ H : L(D,f)(h) > ε}.

In addition, let

M = {S|x : ∃h ∈ HB , LS(h) = 0}

be the set of misleading samples: Namely, for every S|x ∈ M , there is a “bad”

hypothesis, h ∈ HB , that looks like a “good” hypothesis on S|x. Now, recall that

we would like to bound the probability of the event L(D,f)(hS) > ε. But, since

the realizability assumption implies that LS(hS) = 0, it follows that the event

L(D,f)(hS) > ε can only happen if for some h ∈ HB we have LS(h) = 0. In

other words, this event will only happen if our sample is in the set of misleading

samples, M . Formally, we have shown that

{S|x : L(D,f)(hS) > ε} ⊆M .

Note that we can rewrite M as

M =
⋃

h∈HB

{S|x : LS(h) = 0}. (2.5)

Hence,

Dm({S|x : L(D,f)(hS) > ε}) ≤ Dm(M) = Dm(∪h∈HB{S|x : LS(h) = 0}).
(2.6)

Next, we upper bound the right-hand side of the preceding equation using the

union bound – a basic property of probabilities.

lemma 2.2 (Union Bound) For any two sets A,B and a distribution D we

have

D(A ∪B) ≤ D(A) +D(B).

Applying the union bound to the right-hand side of Equation (2.6) yields

Dm({S|x : L(D,f)(hS) > ε}) ≤
∑
h∈HB

Dm({S|x : LS(h) = 0}). (2.7)

Next, let us bound each summand of the right-hand side of the preceding in-

equality. Fix some “bad” hypothesis h ∈ HB . The event LS(h) = 0 is equivalent

40 A Gentle Start

to the event ∀i, h(xi) = f(xi). Since the examples in the training set are sampled

i.i.d. we get that

Dm({S|x : LS(h) = 0}) = Dm({S|x : ∀i, h(xi) = f(xi)})

=

m∏
i=1

D({xi : h(xi) = f(xi)}). (2.8)

For each individual sampling of an element of the training set we have

D({xi : h(xi) = yi}) = 1− L(D,f)(h) ≤ 1− ε,

where the last inequality follows from the fact that h ∈ HB . Combining the

previous equation with Equation (2.8) and using the inequality 1 − ε ≤ e−ε we

obtain that for every h ∈ HB ,

Dm({S|x : LS(h) = 0}) ≤ (1− ε)m ≤ e−εm. (2.9)

Combining this equation with Equation (2.7) we conclude that

Dm({S|x : L(D,f)(hS) > ε}) ≤ |HB | e−εm ≤ |H| e−εm.

A graphical illustration which explains how we used the union bound is given in

Figure 2.1.

Figure 2.1 Each point in the large circle represents a possible m-tuple of instances.
Each colored oval represents the set of “misleading” m-tuple of instances for some
“bad” predictor h ∈ HB . The ERM can potentially overfit whenever it gets a
misleading training set S. That is, for some h ∈ HB we have LS(h) = 0.
Equation (2.9) guarantees that for each individual bad hypothesis, h ∈ HB , at most
(1− ε)m-fraction of the training sets would be misleading. In particular, the larger m
is, the smaller each of these colored ovals becomes. The union bound formalizes the
fact that the area representing the training sets that are misleading with respect to
some h ∈ HB (that is, the training sets in M) is at most the sum of the areas of the
colored ovals. Therefore, it is bounded by |HB | times the maximum size of a colored
oval. Any sample S outside the colored ovals cannot cause the ERM rule to overfit.

corollary 2.3 Let H be a finite hypothesis class. Let δ ∈ (0, 1) and ε > 0

2.4 Exercises 41

and let m be an integer that satisfies

m ≥ log(|H|/δ)
ε

.

Then, for any labeling function, f , and for any distribution, D, for which the

realizability assumption holds (that is, for some h ∈ H, L(D,f)(h) = 0), with

probability of at least 1 − δ over the choice of an i.i.d. sample S of size m, we

have that for every ERM hypothesis, hS, it holds that

L(D,f)(hS) ≤ ε.

The preceeding corollary tells us that for a sufficiently large m, the ERMH rule

over a finite hypothesis class will be probably (with confidence 1−δ) approximately

(up to an error of ε) correct. In the next chapter we formally define the model

of Probably Approximately Correct (PAC) learning.

2.4 Exercises

1. Overfitting of polynomial matching: We have shown that the predictor

defined in Equation (2.3) leads to overfitting. While this predictor seems to

be very unnatural, the goal of this exercise is to show that it can be described

as a thresholded polynomial. That is, show that given a training set S =

{(xi, f(xi))}mi=1 ⊆ (Rd × {0, 1})m, there exists a polynomial pS such that

hS(x) = 1 if and only if pS(x) ≥ 0, where hS is as defined in Equation (2.3).

It follows that learning the class of all thresholded polynomials using the ERM

rule may lead to overfitting.

2. Let H be a class of binary classifiers over a domain X . Let D be an unknown

distribution over X , and let f be the target hypothesis in H. Fix some h ∈ H.

Show that the expected value of LS(h) over the choice of S|x equals L(D,f)(h),

namely,

E
S|x∼Dm

[LS(h)] = L(D,f)(h).

3. Axis aligned rectangles: An axis aligned rectangle classifier in the plane

is a classifier that assigns the value 1 to a point if and only if it is inside a

certain rectangle. Formally, given real numbers a1 ≤ b1, a2 ≤ b2, define the

classifier h(a1,b1,a2,b2) by

h(a1,b1,a2,b2)(x1, x2) =

{
1 if a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2
0 otherwise

. (2.10)

The class of all axis aligned rectangles in the plane is defined as

H2
rec = {h(a1,b1,a2,b2) : a1 ≤ b1, and a2 ≤ b2}.

Note that this is an infinite size hypothesis class. Throughout this exercise we

rely on the realizability assumption.

42 A Gentle Start

1. Let A be the algorithm that returns the smallest rectangle enclosing all

positive examples in the training set. Show that A is an ERM.

2. Show that if A receives a training set of size ≥ 4 log(4/δ)
ε then, with proba-

bility of at least 1− δ it returns a hypothesis with error of at most ε.

Hint : Fix some distribution D over X , let R∗ = R(a∗1, b
∗
1, a
∗
2, b
∗
2) be the rect-

angle that generates the labels, and let f be the corresponding hypothesis.

Let a1 ≥ a∗1 be a number such that the probability mass (with respect

to D) of the rectangle R1 = R(a∗1, a1, a
∗
2, b
∗
2) is exactly ε/4. Similarly, let

b1, a2, b2 be numbers such that the probability masses of the rectangles

R2 = R(b1, b
∗
1, a
∗
2, b
∗
2), R3 = R(a∗1, b

∗
1, a
∗
2, a2), R4 = R(a∗1, b

∗
1, b2, b

∗
2) are all

exactly ε/4. Let R(S) be the rectangle returned by A. See illustration in

Figure 2.2.

+

+

+
+

+

-

-
R∗

R(S)

R1

Figure 2.2 Axis aligned rectangles.

• Show that R(S) ⊆ R∗.
• Show that if S contains (positive) examples in all of the rectangles

R1, R2, R3, R4, then the hypothesis returned by A has error of at

most ε.

• For each i ∈ {1, . . . , 4}, upper bound the probability that S does not

contain an example from Ri.

• Use the union bound to conclude the argument.

3. Repeat the previous question for the class of axis aligned rectangles in Rd.
4. Show that the runtime of applying the algorithm A mentioned earlier is

polynomial in d, 1/ε, and in log(1/δ).

3 A Formal Learning Model

In this chapter we define our main formal learning model – the PAC learning

model and its extensions. We will consider other notions of learnability in Chap-

ter 7.

3.1 PAC Learning

In the previous chapter we have shown that for a finite hypothesis class, if the

ERM rule with respect to that class is applied on a sufficiently large training

sample (whose size is independent of the underlying distribution or labeling

function) then the output hypothesis will be probably approximately correct.

More generally, we now define Probably Approximately Correct (PAC) learning.

definition 3.1 (PAC Learnability) A hypothesis class H is PAC learnable

if there exist a function mH : (0, 1)2 → N and a learning algorithm with the

following property: For every ε, δ ∈ (0, 1), for every distribution D over X , and

for every labeling function f : X → {0, 1}, if the realizable assumption holds

with respect to H,D, f , then when running the learning algorithm on m ≥
mH(ε, δ) i.i.d. examples generated by D and labeled by f , the algorithm returns

a hypothesis h such that, with probability of at least 1 − δ (over the choice of

the examples), L(D,f)(h) ≤ ε.

The definition of Probably Approximately Correct learnability contains two

approximation parameters. The accuracy parameter ε determines how far the

output classifier can be from the optimal one (this corresponds to the “approx-

imately correct”), and a confidence parameter δ indicating how likely the clas-

sifier is to meet that accuracy requirement (corresponds to the “probably” part

of “PAC”). Under the data access model that we are investigating, these ap-

proximations are inevitable. Since the training set is randomly generated, there

may always be a small chance that it will happen to be noninformative (for ex-

ample, there is always some chance that the training set will contain only one

domain point, sampled over and over again). Furthermore, even when we are

lucky enough to get a training sample that does faithfully represent D, because

it is just a finite sample, there may always be some fine details of D that it fails

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

44 A Formal Learning Model

to reflect. Our accuracy parameter, ε, allows “forgiving” the learner’s classifier

for making minor errors.

Sample Complexity
The function mH : (0, 1)2 → N determines the sample complexity of learning H:

that is, how many examples are required to guarantee a probably approximately

correct solution. The sample complexity is a function of the accuracy (ε) and

confidence (δ) parameters. It also depends on properties of the hypothesis class

H – for example, for a finite class we showed that the sample complexity depends

on log the size of H.

Note that if H is PAC learnable, there are many functions mH that satisfy the

requirements given in the definition of PAC learnability. Therefore, to be precise,

we will define the sample complexity of learning H to be the “minimal function,”

in the sense that for any ε, δ, mH(ε, δ) is the minimal integer that satisfies the

requirements of PAC learning with accuracy ε and confidence δ.

Let us now recall the conclusion of the analysis of finite hypothesis classes

from the previous chapter. It can be rephrased as stating:

corollary 3.2 Every finite hypothesis class is PAC learnable with sample

complexity

mH(ε, δ) ≤
⌈

log(|H|/δ)
ε

⌉
.

There are infinite classes that are learnable as well (see, for example, Exer-

cise 3). Later on we will show that what determines the PAC learnability of

a class is not its finiteness but rather a combinatorial measure called the VC

dimension.

3.2 A More General Learning Model

The model we have just described can be readily generalized, so that it can be

made relevant to a wider scope of learning tasks. We consider generalizations in

two aspects:

Removing the Realizability Assumption
We have required that the learning algorithm succeeds on a pair of data distri-

bution D and labeling function f provided that the realizability assumption is

met. For practical learning tasks, this assumption may be too strong (can we

really guarantee that there is a rectangle in the color-hardness space that fully

determines which papayas are tasty?). In the next subsection, we will describe

the agnostic PAC model in which this realizability assumption is waived.

3.2 A More General Learning Model 45

Learning Problems beyond Binary Classification
The learning task that we have been discussing so far has to do with predicting a

binary label to a given example (like being tasty or not). However, many learning

tasks take a different form. For example, one may wish to predict a real valued

number (say, the temperature at 9:00 p.m. tomorrow) or a label picked from

a finite set of labels (like the topic of the main story in tomorrow’s paper). It

turns out that our analysis of learning can be readily extended to such and many

other scenarios by allowing a variety of loss functions. We shall discuss that in

Section 3.2.2 later.

3.2.1 Releasing the Realizability Assumption – Agnostic PAC Learning

A More Realistic Model for the Data-Generating Distribution
Recall that the realizability assumption requires that there exists h? ∈ H such

that Px∼D[h?(x) = f(x)] = 1. In many practical problems this assumption does

not hold. Furthermore, it is maybe more realistic not to assume that the labels

are fully determined by the features we measure on input elements (in the case of

the papayas, it is plausible that two papayas of the same color and softness will

have different taste). In the following, we relax the realizability assumption by

replacing the “target labeling function” with a more flexible notion, a data-labels

generating distribution.

Formally, from now on, let D be a probability distribution over X ×Y, where,

as before, X is our domain set and Y is a set of labels (usually we will consider

Y = {0, 1}). That is, D is a joint distribution over domain points and labels. One

can view such a distribution as being composed of two parts: a distribution Dx
over unlabeled domain points (sometimes called the marginal distribution) and

a conditional probability over labels for each domain point, D((x, y)|x). In the

papaya example, Dx determines the probability of encountering a papaya whose

color and hardness fall in some color-hardness values domain, and the conditional

probability is the probability that a papaya with color and hardness represented

by x is tasty. Indeed, such modeling allows for two papayas that share the same

color and hardness to belong to different taste categories.

The empirical and the True Error Revised
For a probability distribution, D, over X × Y, one can measure how likely h is

to make an error when labeled points are randomly drawn according to D. We

redefine the true error (or risk) of a prediction rule h to be

LD(h)
def
= P

(x,y)∼D
[h(x) 6= y]

def
= D({(x, y) : h(x) 6= y}). (3.1)

We would like to find a predictor, h, for which that error will be minimized.

However, the learner does not know the data generating D. What the learner

does have access to is the training data, S. The definition of the empirical risk

46 A Formal Learning Model

remains the same as before, namely,

LS(h)
def
=
|{i ∈ [m] : h(xi) 6= yi}|

m
.

Given S, a learner can compute LS(h) for any function h : X → {0, 1}. Note

that LS(h) = LD(uniform over S)(h).

The Goal
We wish to find some hypothesis, h : X → Y, that (probably approximately)

minimizes the true risk, LD(h).

The Bayes Optimal Predictor.
Given any probability distribution D over X × {0, 1}, the best label predicting

function from X to {0, 1} will be

fD(x) =

{
1 if P[y = 1|x] ≥ 1/2

0 otherwise

It is easy to verify (see Exercise 7) that for every probability distribution D,

the Bayes optimal predictor fD is optimal, in the sense that no other classifier,

g : X → {0, 1} has a lower error. That is, for every classifier g, LD(fD) ≤ LD(g).

Unfortunately, since we do not knowD, we cannot utilize this optimal predictor

fD. What the learner does have access to is the training sample. We can now

present the formal definition of agnostic PAC learnability, which is a natural

extension of the definition of PAC learnability to the more realistic, nonrealizable,

learning setup we have just discussed.

Clearly, we cannot hope that the learning algorithm will find a hypothesis

whose error is smaller than the minimal possible error, that of the Bayes predic-

tor.

Furthermore, as we shall prove later, once we make no prior assumptions

about the data-generating distribution, no algorithm can be guaranteed to find

a predictor that is as good as the Bayes optimal one. Instead, we require that

the learning algorithm will find a predictor whose error is not much larger than

the best possible error of a predictor in some given benchmark hypothesis class.

Of course, the strength of such a requirement depends on the choice of that

hypothesis class.

definition 3.3 (Agnostic PAC Learnability) A hypothesis class H is agnostic

PAC learnable if there exist a function mH : (0, 1)2 → N and a learning algorithm

with the following property: For every ε, δ ∈ (0, 1) and for every distribution D
over X×Y, when running the learning algorithm on m ≥ mH(ε, δ) i.i.d. examples

generated by D, the algorithm returns a hypothesis h such that, with probability

of at least 1− δ (over the choice of the m training examples),

LD(h) ≤ min
h′∈H

LD(h′) + ε.

3.2 A More General Learning Model 47

Clearly, if the realizability assumption holds, agnostic PAC learning provides

the same guarantee as PAC learning. In that sense, agnostic PAC learning gener-

alizes the definition of PAC learning. When the realizability assumption does not

hold, no learner can guarantee an arbitrarily small error. Nevertheless, under the

definition of agnostic PAC learning, a learner can still declare success if its error

is not much larger than the best error achievable by a predictor from the class H.

This is in contrast to PAC learning, in which the learner is required to achieve

a small error in absolute terms and not relative to the best error achievable by

the hypothesis class.

3.2.2 The Scope of Learning Problems Modeled

We next extend our model so that it can be applied to a wide variety of learning

tasks. Let us consider some examples of different learning tasks.

• Multiclass Classification Our classification does not have to be binary.

Take, for example, the task of document classification: We wish to design a

program that will be able to classify given documents according to topics

(e.g., news, sports, biology, medicine). A learning algorithm for such a task

will have access to examples of correctly classified documents and, on the

basis of these examples, should output a program that can take as input a

new document and output a topic classification for that document. Here,

the domain set is the set of all potential documents. Once again, we would

usually represent documents by a set of features that could include counts

of different key words in the document, as well as other possibly relevant

features like the size of the document or its origin. The label set in this task

will be the set of possible document topics (so Y will be some large finite

set). Once we determine our domain and label sets, the other components

of our framework look exactly the same as in the papaya tasting example;

Our training sample will be a finite sequence of (feature vector, label) pairs,

the learner’s output will be a function from the domain set to the label set,

and, finally, for our measure of success, we can use the probability, over

(document, topic) pairs, of the event that our predictor suggests a wrong

label.

• Regression In this task, one wishes to find some simple pattern in the data –

a functional relationship between the X and Y components of the data. For

example, one wishes to find a linear function that best predicts a baby’s

birth weight on the basis of ultrasound measures of his head circumference,

abdominal circumference, and femur length. Here, our domain set X is some

subset of R3 (the three ultrasound measurements), and the set of “labels,”

Y, is the the set of real numbers (the weight in grams). In this context,

it is more adequate to call Y the target set. Our training data as well as

the learner’s output are as before (a finite sequence of (x, y) pairs, and

a function from X to Y respectively). However, our measure of success is

48 A Formal Learning Model

different. We may evaluate the quality of a hypothesis function, h : X → Y,

by the expected square difference between the true labels and their predicted

values, namely,

LD(h)
def
= E

(x,y)∼D
(h(x)− y)2. (3.2)

To accommodate a wide range of learning tasks we generalize our formalism

of the measure of success as follows:

Generalized Loss Functions
Given any set H (that plays the role of our hypotheses, or models) and some

domain Z let ` be any function fromH×Z to the set of nonnegative real numbers,

` : H× Z → R+.

We call such functions loss functions.

Note that for prediction problems, we have that Z = X × Y. However, our

notion of the loss function is generalized beyond prediction tasks, and therefore

it allows Z to be any domain of examples (for instance, in unsupervised learning

tasks such as the one described in Chapter 22, Z is not a product of an instance

domain and a label domain).

We now define the risk function to be the expected loss of a classifier, h ∈ H,

with respect to a probability distribution D over Z, namely,

LD(h)
def
= E

z∼D
[`(h, z)]. (3.3)

That is, we consider the expectation of the loss of h over objects z picked ran-

domly according to D. Similarly, we define the empirical risk to be the expected

loss over a given sample S = (z1, . . . , zm) ∈ Zm, namely,

LS(h)
def
=

1

m

m∑
i=1

`(h, zi). (3.4)

The loss functions used in the preceding examples of classification and regres-

sion tasks are as follows:

• 0–1 loss: Here, our random variable z ranges over the set of pairs X ×Y and

the loss function is

`0−1(h, (x, y))
def
=

{
0 if h(x) = y

1 if h(x) 6= y

This loss function is used in binary or multiclass classification problems.

One should note that, for a random variable, α, taking the values {0, 1},
Eα∼D[α] = Pα∼D[α = 1]. Consequently, for this loss function, the defini-

tions of LD(h) given in Equation (3.3) and Equation (3.1) coincide.

• Square Loss: Here, our random variable z ranges over the set of pairs X ×Y
and the loss function is

`sq(h, (x, y))
def
= (h(x)− y)2.

3.3 Summary 49

This loss function is used in regression problems.

We will later see more examples of useful instantiations of loss functions.

To summarize, we formally define agnostic PAC learnability for general loss

functions.

definition 3.4 (Agnostic PAC Learnability for General Loss Functions) A

hypothesis class H is agnostic PAC learnable with respect to a set Z and a

loss function ` : H × Z → R+, if there exist a function mH : (0, 1)2 → N
and a learning algorithm with the following property: For every ε, δ ∈ (0, 1)

and for every distribution D over Z, when running the learning algorithm on

m ≥ mH(ε, δ) i.i.d. examples generated by D, the algorithm returns h ∈ H
such that, with probability of at least 1 − δ (over the choice of the m training

examples),

LD(h) ≤ min
h′∈H

LD(h′) + ε,

where LD(h) = Ez∼D[`(h, z)].

Remark 3.1 (A Note About Measurability*) In the aforementioned definition,

for every h ∈ H, we view the function `(h, ·) : Z → R+ as a random variable and

define LD(h) to be the expected value of this random variable. For that, we need

to require that the function `(h, ·) is measurable. Formally, we assume that there

is a σ-algebra of subsets of Z, over which the probability D is defined, and that

the preimage of every initial segment in R+ is in this σ-algebra. In the specific

case of binary classification with the 0−1 loss, the σ-algebra is over X × {0, 1}
and our assumption on ` is equivalent to the assumption that for every h, the

set {(x, h(x)) : x ∈ X} is in the σ-algebra.

Remark 3.2 (Proper versus Representation-Independent Learning*) In the pre-

ceding definition, we required that the algorithm will return a hypothesis from

H. In some situations, H is a subset of a set H′, and the loss function can be

naturally extended to be a function from H′ × Z to the reals. In this case, we

may allow the algorithm to return a hypothesis h′ ∈ H′, as long as it satisfies

the requirement LD(h′) ≤ minh∈H LD(h) + ε. Allowing the algorithm to output

a hypothesis from H′ is called representation independent learning, while proper

learning occurs when the algorithm must output a hypothesis from H. Represen-

tation independent learning is sometimes called “improper learning,” although

there is nothing improper in representation independent learning.

3.3 Summary

In this chapter we defined our main formal learning model – PAC learning. The

basic model relies on the realizability assumption, while the agnostic variant does

50 A Formal Learning Model

not impose any restrictions on the underlying distribution over the examples. We

also generalized the PAC model to arbitrary loss functions. We will sometimes

refer to the most general model simply as PAC learning, omitting the “agnostic”

prefix and letting the reader infer what the underlying loss function is from the

context. When we would like to emphasize that we are dealing with the original

PAC setting we mention that the realizability assumption holds. In Chapter 7

we will discuss other notions of learnability.

3.4 Bibliographic Remarks

Our most general definition of agnostic PAC learning with general loss func-

tions follows the works of Vladimir Vapnik and Alexey Chervonenkis (Vapnik &

Chervonenkis 1971). In particular, we follow Vapnik’s general setting of learning

(Vapnik 1982, Vapnik 1992, Vapnik 1995, Vapnik 1998).

PAC learning was introduced by Valiant (1984). Valiant was named the winner

of the 2010 Turing Award for the introduction of the PAC model. Valiant’s

definition requires that the sample complexity will be polynomial in 1/ε and

in 1/δ, as well as in the representation size of hypotheses in the class (see also

Kearns & Vazirani (1994)). As we will see in Chapter 6, if a problem is at all PAC

learnable then the sample complexity depends polynomially on 1/ε and log(1/δ).

Valiant’s definition also requires that the runtime of the learning algorithm will

be polynomial in these quantities. In contrast, we chose to distinguish between

the statistical aspect of learning and the computational aspect of learning. We

will elaborate on the computational aspect later on in Chapter 8, where we

introduce the full PAC learning model of Valiant. For expository reasons, we

use the term PAC learning even when we ignore the runtime aspect of learning.

Finally, the formalization of agnostic PAC learning is due to Haussler (1992).

3.5 Exercises

1. Monotonicity of Sample Complexity: Let H be a hypothesis class for a

binary classification task. Suppose that H is PAC learnable and its sample

complexity is given by mH(·, ·). Show that mH is monotonically nonincreasing

in each of its parameters. That is, show that given δ ∈ (0, 1), and given 0 <

ε1 ≤ ε2 < 1, we have that mH(ε1, δ) ≥ mH(ε2, δ). Similarly, show that given

ε ∈ (0, 1), and given 0 < δ1 ≤ δ2 < 1, we have that mH(ε, δ1) ≥ mH(ε, δ2).

2. Let X be a discrete domain, and let HSingleton = {hz : z ∈ X} ∪ {h−}, where

for each z ∈ X , hz is the function defined by hz(x) = 1 if x = z and hz(x) = 0

if x 6= z. h− is simply the all-negative hypothesis, namely, ∀x ∈ X, h−(x) = 0.

The realizability assumption here implies that the true hypothesis f labels

negatively all examples in the domain, perhaps except one.

3.5 Exercises 51

1. Describe an algorithm that implements the ERM rule for learningHSingleton

in the realizable setup.

2. Show that HSingleton is PAC learnable. Provide an upper bound on the

sample complexity.

3. Let X = R2, Y = {0, 1}, and let H be the class of concentric circles in the

plane, that is, H = {hr : r ∈ R+}, where hr(x) = 1[‖x‖≤r]. Prove that H is

PAC learnable (assume realizability), and its sample complexity is bounded

by

mH(ε, δ) ≤
⌈

log(1/δ)

ε

⌉
.

4. In this question, we study the hypothesis class of Boolean conjunctions defined

as follows. The instance space is X = {0, 1}d and the label set is Y = {0, 1}. A

literal over the variables x1, . . . , xd is a simple Boolean function that takes the

form f(x) = xi, for some i ∈ [d], or f(x) = 1−xi for some i ∈ [d]. We use the

notation x̄i as a shorthand for 1−xi. A conjunction is any product of literals.

In Boolean logic, the product is denoted using the ∧ sign. For example, the

function h(x) = x1 · (1− x2) is written as x1 ∧ x̄2.

We consider the hypothesis class of all conjunctions of literals over the d

variables. The empty conjunction is interpreted as the all-positive hypothesis

(namely, the function that returns h(x) = 1 for all x). The conjunction x1∧x̄1

(and similarly any conjunction involving a literal and its negation) is allowed

and interpreted as the all-negative hypothesis (namely, the conjunction that

returns h(x) = 0 for all x). We assume realizability: Namely, we assume

that there exists a Boolean conjunction that generates the labels. Thus, each

example (x, y) ∈ X × Y consists of an assignment to the d Boolean variables

x1, . . . , xd, and its truth value (0 for false and 1 for true).

For instance, let d = 3 and suppose that the true conjunction is x1 ∧ x̄2.

Then, the training set S might contain the following instances:

((1, 1, 1), 0), ((1, 0, 1), 1), ((0, 1, 0), 0)((1, 0, 0), 1).

Prove that the hypothesis class of all conjunctions over d variables is

PAC learnable and bound its sample complexity. Propose an algorithm that

implements the ERM rule, whose runtime is polynomial in d ·m.

5. Let X be a domain and let D1,D2, . . . ,Dm be a sequence of distributions

over X . Let H be a finite class of binary classifiers over X and let f ∈ H.

Suppose we are getting a sample S of m examples, such that the instances are

independent but are not identically distributed; the ith instance is sampled

from Di and then yi is set to be f(xi). Let D̄m denote the average, that is,

D̄m = (D1 + · · ·+Dm)/m.

Fix an accuracy parameter ε ∈ (0, 1). Show that

P
[
∃h ∈ H s.t. L(D̄m,f)(h) > ε and L(S,f)(h) = 0

]
≤ |H|e−εm.

52 A Formal Learning Model

Hint: Use the geometric-arithmetic mean inequality.

6. Let H be a hypothesis class of binary classifiers. Show that if H is agnostic

PAC learnable, then H is PAC learnable as well. Furthermore, if A is a suc-

cessful agnostic PAC learner for H, then A is also a successful PAC learner

for H.

7. (*) The Bayes optimal predictor: Show that for every probability distri-

bution D, the Bayes optimal predictor fD is optimal, in the sense that for

every classifier g from X to {0, 1}, LD(fD) ≤ LD(g).

8. (*) We say that a learning algorithm A is better than B with respect to some

probability distribution, D, if

LD(A(S)) ≤ LD(B(S))

for all samples S ∈ (X ×{0, 1})m. We say that a learning algorithm A is better

than B, if it is better than B with respect to all probability distributions D
over X × {0, 1}.
1. A probabilistic label predictor is a function that assigns to every domain

point x a probability value, h(x) ∈ [0, 1], that determines the probability of

predicting the label 1. That is, given such an h and an input, x, the label for

x is predicted by tossing a coin with bias h(x) toward Heads and predicting

1 iff the coin comes up Heads. Formally, we define a probabilistic label

predictor as a function, h : X → [0, 1]. The loss of such h on an example

(x, y) is defined to be |h(x)− y|, which is exactly the probability that the

prediction of h will not be equal to y. Note that if h is deterministic, that

is, returns values in {0, 1}, then |h(x)− y| = 1[h(x)6=y].

Prove that for every data-generating distribution D over X × {0, 1}, the

Bayes optimal predictor has the smallest risk (w.r.t. the loss function

`(h, (x, y)) = |h(x)−y|, among all possible label predictors, including prob-

abilistic ones).

2. Let X be a domain and {0, 1} be a set of labels. Prove that for every

distribution D over X ×{0, 1}, there exist a learning algorithm AD that is

better than any other learning algorithm with respect to D.

3. Prove that for every learning algorithm A there exist a probability distri-

bution, D, and a learning algorithm B such that A is not better than B

w.r.t. D.

9. Consider a variant of the PAC model in which there are two example ora-

cles: one that generates positive examples and one that generates negative

examples, both according to the underlying distribution D on X . Formally,

given a target function f : X → {0, 1}, let D+ be the distribution over

X+ = {x ∈ X : f(x) = 1} defined by D+(A) = D(A)/D(X+), for every

A ⊂ X+. Similarly, D− is the distribution over X− induced by D.

The definition of PAC learnability in the two-oracle model is the same as the

standard definition of PAC learnability except that here the learner has access

to m+
H(ε, δ) i.i.d. examples from D+ and m−(ε, δ) i.i.d. examples from D−. The

learner’s goal is to output h s.t. with probability at least 1−δ (over the choice

3.5 Exercises 53

of the two training sets, and possibly over the nondeterministic decisions made

by the learning algorithm), both L(D+,f)(h) ≤ ε and L(D−,f)(h) ≤ ε.
1. (*) Show that if H is PAC learnable (in the standard one-oracle model),

then H is PAC learnable in the two-oracle model.

2. (**) Define h+ to be the always-plus hypothesis and h− to be the always-

minus hypothesis. Assume that h+, h− ∈ H. Show that if H is PAC learn-

able in the two-oracle model, then H is PAC learnable in the standard

one-oracle model.

4 Learning via Uniform Convergence

The first formal learning model that we have discussed was the PAC model.

In Chapter 2 we have shown that under the realizability assumption, any finite

hypothesis class is PAC learnable. In this chapter we will develop a general tool,

uniform convergence, and apply it to show that any finite class is learnable in

the agnostic PAC model with general loss functions, as long as the range loss

function is bounded.

4.1 Uniform Convergence Is Sufficient for Learnability

The idea behind the learning condition discussed in this chapter is very simple.

Recall that, given a hypothesis class, H, the ERM learning paradigm works

as follows: Upon receiving a training sample, S, the learner evaluates the risk

(or error) of each h in H on the given sample and outputs a member of H that

minimizes this empirical risk. The hope is that an h that minimizes the empirical

risk with respect to S is a risk minimizer (or has risk close to the minimum) with

respect to the true data probability distribution as well. For that, it suffices to

ensure that the empirical risks of all members of H are good approximations of

their true risk. Put another way, we need that uniformly over all hypotheses in

the hypothesis class, the empirical risk will be close to the true risk, as formalized

in the following.

definition 4.1 (ε-representative sample) A training set S is called ε-representative

(w.r.t. domain Z, hypothesis class H, loss function `, and distribution D) if

∀h ∈ H, |LS(h)− LD(h)| ≤ ε.

The next simple lemma states that whenever the sample is (ε/2)-representative,

the ERM learning rule is guaranteed to return a good hypothesis.

lemma 4.2 Assume that a training set S is ε
2 -representative (w.r.t. domain

Z, hypothesis class H, loss function `, and distribution D). Then, any output of

ERMH(S), namely, any hS ∈ argminh∈H LS(h), satisfies

LD(hS) ≤ min
h∈H

LD(h) + ε.

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

4.2 Finite Classes Are Agnostic PAC Learnable 55

Proof For every h ∈ H,

LD(hS) ≤ LS(hS) + ε
2 ≤ LS(h) + ε

2 ≤ LD(h) + ε
2 + ε

2 = LD(h) + ε,

where the first and third inequalities are due to the assumption that S is ε
2 -

representative (Definition 4.1) and the second inequality holds since hS is an

ERM predictor.

The preceding lemma implies that to ensure that the ERM rule is an agnostic

PAC learner, it suffices to show that with probability of at least 1 − δ over the

random choice of a training set, it will be an ε-representative training set. The

uniform convergence condition formalizes this requirement.

definition 4.3 (Uniform Convergence) We say that a hypothesis class H has

the uniform convergence property (w.r.t. a domain Z and a loss function `) if

there exists a function mUC

H : (0, 1)2 → N such that for every ε, δ ∈ (0, 1) and

for every probability distribution D over Z, if S is a sample of m ≥ mUC

H (ε, δ)

examples drawn i.i.d. according to D, then, with probability of at least 1− δ, S
is ε-representative.

Similar to the definition of sample complexity for PAC learning, the function

mUC

H measures the (minimal) sample complexity of obtaining the uniform con-

vergence property, namely, how many examples we need to ensure that with

probability of at least 1− δ the sample would be ε-representative.

The term uniform here refers to having a fixed sample size that works for all

members of H and over all possible probability distributions over the domain.

The following corollary follows directly from Lemma 4.2 and the definition of

uniform convergence.

corollary 4.4 If a class H has the uniform convergence property with a

function mUC

H then the class is agnostically PAC learnable with the sample com-

plexity mH(ε, δ) ≤ mUC

H (ε/2, δ). Furthermore, in that case, the ERMH paradigm

is a successful agnostic PAC learner for H.

4.2 Finite Classes Are Agnostic PAC Learnable

In view of Corollary 4.4, the claim that every finite hypothesis class is agnostic

PAC learnable will follow once we establish that uniform convergence holds for

a finite hypothesis class.

To show that uniform convergence holds we follow a two step argument, similar

to the derivation in Chapter 2. The first step applies the union bound while the

second step employs a measure concentration inequality. We now explain these

two steps in detail.

Fix some ε, δ. We need to find a sample size m that guarantees that for any

D, with probability of at least 1 − δ of the choice of S = (z1, . . . , zm) sampled

56 Learning via Uniform Convergence

i.i.d. from D we have that for all h ∈ H, |LS(h)− LD(h)| ≤ ε. That is,

Dm({S : ∀h ∈ H, |LS(h)− LD(h)| ≤ ε}) ≥ 1− δ.

Equivalently, we need to show that

Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ε}) < δ.

Writing

{S : ∃h ∈ H, |LS(h)− LD(h)| > ε} = ∪h∈H{S : |LS(h)− LD(h)| > ε},

and applying the union bound (Lemma 2.2) we obtain

Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ε}) ≤
∑
h∈H

Dm({S : |LS(h)− LD(h)| > ε}).

(4.1)

Our second step will be to argue that each summand of the right-hand side

of this inequality is small enough (for a sufficiently large m). That is, we will

show that for any fixed hypothesis, h, (which is chosen in advance prior to the

sampling of the training set), the gap between the true and empirical risks,

|LS(h)− LD(h)|, is likely to be small.

Recall that LD(h) = Ez∼D[`(h, z)] and that LS(h) = 1
m

∑m
i=1 `(h, zi). Since

each zi is sampled i.i.d. from D, the expected value of the random variable

`(h, zi) is LD(h). By the linearity of expectation, it follows that LD(h) is also

the expected value of LS(h). Hence, the quantity |LD(h)−LS(h)| is the deviation

of the random variable LS(h) from its expectation. We therefore need to show

that the measure of LS(h) is concentrated around its expected value.

A basic statistical fact, the law of large numbers, states that when m goes to

infinity, empirical averages converge to their true expectation. This is true for

LS(h), since it is the empirical average ofm i.i.d random variables. However, since

the law of large numbers is only an asymptotic result, it provides no information

about the gap between the empirically estimated error and its true value for any

given, finite, sample size.

Instead, we will use a measure concentration inequality due to Hoeffding, which

quantifies the gap between empirical averages and their expected value.

lemma 4.5 (Hoeffding’s Inequality) Let θ1, . . . , θm be a sequence of i.i.d. ran-

dom variables and assume that for all i, E[θi] = µ and P[a ≤ θi ≤ b] = 1. Then,

for any ε > 0

P

[∣∣∣∣∣ 1
m

m∑
i=1

θi − µ

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2mε2/(b− a)2

)
.

The proof can be found in Appendix B.

Getting back to our problem, let θi be the random variable `(h, zi). Since h

is fixed and z1, . . . , zm are sampled i.i.d., it follows that θ1, . . . , θm are also i.i.d.

random variables. Furthermore, LS(h) = 1
m

∑m
i=1 θi and LD(h) = µ. Let us

4.2 Finite Classes Are Agnostic PAC Learnable 57

further assume that the range of ` is [0, 1] and therefore θi ∈ [0, 1]. We therefore

obtain that

Dm({S : |LS(h)− LD(h)| > ε}) = P

[∣∣∣∣∣ 1
m

m∑
i=1

θi − µ

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2mε2

)
.

(4.2)

Combining this with Equation (4.1) yields

Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ε}) ≤
∑
h∈H

2 exp
(
−2mε2

)
= 2 |H| exp

(
−2mε2

)
.

Finally, if we choose

m ≥ log(2|H|/δ)
2ε2

then

Dm({S : ∃h ∈ H, |LS(h)− LD(h)| > ε}) ≤ δ.

corollary 4.6 Let H be a finite hypothesis class, let Z be a domain, and let

` : H × Z → [0, 1] be a loss function. Then, H enjoys the uniform convergence

property with sample complexity

mUC

H (ε, δ) ≤
⌈

log(2|H|/δ)
2ε2

⌉
.

Furthermore, the class is agnostically PAC learnable using the ERM algorithm

with sample complexity

mH(ε, δ) ≤ mUC

H (ε/2, δ) ≤
⌈

2 log(2|H|/δ)
ε2

⌉
.

Remark 4.1 (The “Discretization Trick”) While the preceding corollary only

applies to finite hypothesis classes, there is a simple trick that allows us to get

a very good estimate of the practical sample complexity of infinite hypothesis

classes. Consider a hypothesis class that is parameterized by d parameters. For

example, let X = R, Y = {±1}, and the hypothesis class, H, be all functions

of the form hθ(x) = sign(x − θ). That is, each hypothesis is parameterized by

one parameter, θ ∈ R, and the hypothesis outputs 1 for all instances larger than

θ and outputs −1 for instances smaller than θ. This is a hypothesis class of an

infinite size. However, if we are going to learn this hypothesis class in practice,

using a computer, we will probably maintain real numbers using floating point

representation, say, of 64 bits. It follows that in practice, our hypothesis class

is parameterized by the set of scalars that can be represented using a 64 bits

floating point number. There are at most 264 such numbers; hence the actual

size of our hypothesis class is at most 264. More generally, if our hypothesis class

is parameterized by d numbers, in practice we learn a hypothesis class of size at

most 264d. Applying Corollary 4.6 we obtain that the sample complexity of such

58 Learning via Uniform Convergence

classes is bounded by 128d+2 log(2/δ)
ε2 . This upper bound on the sample complex-

ity has the deficiency of being dependent on the specific representation of real

numbers used by our machine. In Chapter 6 we will introduce a rigorous way

to analyze the sample complexity of infinite size hypothesis classes. Neverthe-

less, the discretization trick can be used to get a rough estimate of the sample

complexity in many practical situations.

4.3 Summary

If the uniform convergence property holds for a hypothesis class H then in most

cases the empirical risks of hypotheses in H will faithfully represent their true

risks. Uniform convergence suffices for agnostic PAC learnability using the ERM

rule. We have shown that finite hypothesis classes enjoy the uniform convergence

property and are hence agnostic PAC learnable.

4.4 Bibliographic Remarks

Classes of functions for which the uniform convergence property holds are also

called Glivenko-Cantelli classes, named after Valery Ivanovich Glivenko and

Francesco Paolo Cantelli, who proved the first uniform convergence result in

the 1930s. See (Dudley, Gine & Zinn 1991). The relation between uniform con-

vergence and learnability was thoroughly studied by Vapnik – see (Vapnik 1992,

Vapnik 1995, Vapnik 1998). In fact, as we will see later in Chapter 6, the funda-

mental theorem of learning theory states that in binary classification problems,

uniform convergence is not only a sufficient condition for learnability but is also

a necessary condition. This is not the case for more general learning problems

(see (Shalev-Shwartz, Shamir, Srebro & Sridharan 2010)).

4.5 Exercises

1. In this exercise, we show that the (ε, δ) requirement on the convergence of

errors in our definitions of PAC learning, is, in fact, quite close to a sim-

pler looking requirement about averages (or expectations). Prove that the

following two statements are equivalent (for any learning algorithm A, any

probability distribution D, and any loss function whose range is [0, 1]):

1. For every ε, δ > 0, there exists m(ε, δ) such that ∀m ≥ m(ε, δ)

P
S∼Dm

[LD(A(S)) > ε] < δ

2.

lim
m→∞

E
S∼Dm

[LD(A(S))] = 0

4.5 Exercises 59

(where ES∼Dm denotes the expectation over samples S of size m).

2. Bounded loss functions: In Corollary 4.6 we assumed that the range of the

loss function is [0, 1]. Prove that if the range of the loss function is [a, b] then

the sample complexity satisfies

mH(ε, δ) ≤ mUC

H (ε/2, δ) ≤
⌈

2 log(2|H|/δ)(b− a)2

ε2

⌉
.

5 The Bias-Complexity Tradeoff

In Chapter 2 we saw that unless one is careful, the training data can mislead the

learner, and result in overfitting. To overcome this problem, we restricted the

search space to some hypothesis class H. Such a hypothesis class can be viewed

as reflecting some prior knowledge that the learner has about the task – a belief

that one of the members of the class H is a low-error model for the task. For

example, in our papayas taste problem, on the basis of our previous experience

with other fruits, we may assume that some rectangle in the color-hardness plane

predicts (at least approximately) the papaya’s tastiness.

Is such prior knowledge really necessary for the success of learning? Maybe

there exists some kind of universal learner, that is, a learner who has no prior

knowledge about a certain task and is ready to be challenged by any task? Let

us elaborate on this point. A specific learning task is defined by an unknown

distribution D over X × Y, where the goal of the learner is to find a predictor

h : X → Y, whose risk, LD(h), is small enough. The question is therefore whether

there exist a learning algorithm A and a training set size m, such that for every

distribution D, if A receives m i.i.d. examples from D, there is a high chance it

outputs a predictor h that has a low risk.

The first part of this chapter addresses this question formally. The No-Free-

Lunch theorem states that no such universal learner exists. To be more precise,

the theorem states that for binary classification prediction tasks, for every learner

there exists a distribution on which it fails. We say that the learner fails if, upon

receiving i.i.d. examples from that distribution, its output hypothesis is likely

to have a large risk, say, ≥ 0.3, whereas for the same distribution, there exists

another learner that will output a hypothesis with a small risk. In other words,

the theorem states that no learner can succeed on all learnable tasks – every

learner has tasks on which it fails while other learners succeed.

Therefore, when approaching a particular learning problem, defined by some

distributionD, we should have some prior knowledge onD. One type of such prior

knowledge is that D comes from some specific parametric family of distributions.

We will study learning under such assumptions later on in Chapter 24. Another

type of prior knowledge on D, which we assumed when defining the PAC learning

model, is that there exists h in some predefined hypothesis class H, such that

LD(h) = 0. A softer type of prior knowledge onD is assuming that minh∈H LD(h)

is small. In a sense, this weaker assumption on D is a prerequisite for using the

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

5.1 The No-Free-Lunch Theorem 61

agnostic PAC model, in which we require that the risk of the output hypothesis

will not be much larger than minh∈H LD(h).

In the second part of this chapter we study the benefits and pitfalls of using

a hypothesis class as a means of formalizing prior knowledge. We decompose

the error of an ERM algorithm over a class H into two components. The first

component reflects the quality of our prior knowledge, measured by the minimal

risk of a hypothesis in our hypothesis class, minh∈H LD(h). This component is

also called the approximation error, or the bias of the algorithm toward choosing

a hypothesis from H. The second component is the error due to overfitting,

which depends on the size or the complexity of the class H and is called the

estimation error. These two terms imply a tradeoff between choosing a more

complex H (which can decrease the bias but increases the risk of overfitting)

or a less complex H (which might increase the bias but decreases the potential

overfitting).

5.1 The No-Free-Lunch Theorem

In this part we prove that there is no universal learner. We do this by showing

that no learner can succeed on all learning tasks, as formalized in the following

theorem:

theorem 5.1 (No-Free-Lunch) Let A be any learning algorithm for the task

of binary classification with respect to the 0 − 1 loss over a domain X . Let m

be any number smaller than |X |/2, representing a training set size. Then, there

exists a distribution D over X × {0, 1} such that:

1. There exists a function f : X → {0, 1} with LD(f) = 0.

2. With probability of at least 1/7 over the choice of S ∼ Dm we have that

LD(A(S)) ≥ 1/8.

This theorem states that for every learner, there exists a task on which it fails,

even though that task can be successfully learned by another learner. Indeed, a

trivial successful learner in this case would be an ERM learner with the hypoth-

esis class H = {f}, or more generally, ERM with respect to any finite hypothesis

class that contains f and whose size satisfies the equation m ≥ 8 log(7|H|/6) (see

Corollary 2.3).

Proof Let C be a subset of X of size 2m. The intuition of the proof is that

any learning algorithm that observes only half of the instances in C has no

information on what should be the labels of the rest of the instances in C.

Therefore, there exists a “reality,” that is, some target function f , that would

contradict the labels that A(S) predicts on the unobserved instances in C.

Note that there are T = 22m possible functions from C to {0, 1}. Denote these

functions by f1, . . . , fT . For each such function, let Di be a distribution over

62 The Bias-Complexity Tradeoff

C × {0, 1} defined by

Di({(x, y)}) =

{
1/|C| if y = fi(x)

0 otherwise.

That is, the probability to choose a pair (x, y) is 1/|C| if the label y is indeed

the true label according to fi, and the probability is 0 if y 6= fi(x). Clearly,

LDi(fi) = 0.

We will show that for every algorithm, A, that receives a training set of m

examples from C×{0, 1} and returns a function A(S) : C → {0, 1}, it holds that

max
i∈[T]

E
S∼Dmi

[LDi(A(S))] ≥ 1/4. (5.1)

Clearly, this means that for every algorithm, A′, that receives a training set of m

examples from X ×{0, 1} there exist a function f : X → {0, 1} and a distribution

D over X × {0, 1}, such that LD(f) = 0 and

E
S∼Dm

[LD(A′(S))] ≥ 1/4. (5.2)

It is easy to verify that the preceding suffices for showing that P[LD(A′(S)) ≥
1/8] ≥ 1/7, which is what we need to prove (see Exercise 1).

We now turn to proving that Equation (5.1) holds. There are k = (2m)m

possible sequences of m examples from C. Denote these sequences by S1, . . . , Sk.

Also, if Sj = (x1, . . . , xm) we denote by Sij the sequence containing the instances

in Sj labeled by the function fi, namely, Sij = ((x1, fi(x1)), . . . , (xm, fi(xm))). If

the distribution is Di then the possible training sets A can receive are Si1, . . . , S
i
k,

and all these training sets have the same probability of being sampled. Therefore,

E
S∼Dmi

[LDi(A(S))] =
1

k

k∑
j=1

LDi(A(Sij)). (5.3)

Using the facts that “maximum” is larger than “average” and that “average” is

larger than “minimum,” we have

max
i∈[T]

1

k

k∑
j=1

LDi(A(Sij)) ≥
1

T

T∑
i=1

1

k

k∑
j=1

LDi(A(Sij))

=
1

k

k∑
j=1

1

T

T∑
i=1

LDi(A(Sij))

≥ min
j∈[k]

1

T

T∑
i=1

LDi(A(Sij)). (5.4)

Next, fix some j ∈ [k]. Denote Sj = (x1, . . . , xm) and let v1, . . . , vp be the

examples in C that do not appear in Sj . Clearly, p ≥ m. Therefore, for every

5.1 The No-Free-Lunch Theorem 63

function h : C → {0, 1} and every i we have

LDi(h) =
1

2m

∑
x∈C

1[h(x) 6=fi(x)]

≥ 1

2m

p∑
r=1

1[h(vr)6=fi(vr)]

≥ 1

2p

p∑
r=1

1[h(vr) 6=fi(vr)]. (5.5)

Hence,

1

T

T∑
i=1

LDi(A(Sij)) ≥
1

T

T∑
i=1

1

2p

p∑
r=1

1[A(Sij)(vr)6=fi(vr)]

=
1

2p

p∑
r=1

1

T

T∑
i=1

1[A(Sij)(vr)6=fi(vr)]

≥ 1

2
· min
r∈[p]

1

T

T∑
i=1

1[A(Sij)(vr)6=fi(vr)]. (5.6)

Next, fix some r ∈ [p]. We can partition all the functions in f1, . . . , fT into T/2

disjoint pairs, where for a pair (fi, fi′) we have that for every c ∈ C, fi(c) 6= fi′(c)

if and only if c = vr. Since for such a pair we must have Sij = Si
′

j , it follows that

1[A(Sij)(vr) 6=fi(vr)] + 1[A(Si
′
j)(vr) 6=fi′ (vr)] = 1,

which yields

1

T

T∑
i=1

1[A(Sij)(vr)6=fi(vr)] =
1

2
.

Combining this with Equation (5.6), Equation (5.4), and Equation (5.3), we

obtain that Equation (5.1) holds, which concludes our proof.

5.1.1 No-Free-Lunch and Prior Knowledge

How does the No-Free-Lunch result relate to the need for prior knowledge? Let us

consider an ERM predictor over the hypothesis classH of all the functions f from

X to {0, 1}. This class represents lack of prior knowledge: Every possible function

from the domain to the label set is considered a good candidate. According to the

No-Free-Lunch theorem, any algorithm that chooses its output from hypotheses

in H, and in particular the ERM predictor, will fail on some learning task.

Therefore, this class is not PAC learnable, as formalized in the following corollary:

corollary 5.2 Let X be an infinite domain set and let H be the set of all

functions from X to {0, 1}. Then, H is not PAC learnable.

64 The Bias-Complexity Tradeoff

Proof Assume, by way of contradiction, that the class is learnable. Choose

some ε < 1/8 and δ < 1/7. By the definition of PAC learnability, there must

be some learning algorithm A and an integer m = m(ε, δ), such that for any

data-generating distribution over X ×{0, 1}, if for some function f : X → {0, 1},
LD(f) = 0, then with probability greater than 1 − δ when A is applied to

samples S of size m, generated i.i.d. by D, LD(A(S)) ≤ ε. However, applying

the No-Free-Lunch theorem, since |X | > 2m, for every learning algorithm (and

in particular for the algorithm A), there exists a distribution D such that with

probability greater than 1/7 > δ, LD(A(S)) > 1/8 > ε, which leads to the

desired contradiction.

How can we prevent such failures? We can escape the hazards foreseen by the

No-Free-Lunch theorem by using our prior knowledge about a specific learning

task, to avoid the distributions that will cause us to fail when learning that task.

Such prior knowledge can be expressed by restricting our hypothesis class.

But how should we choose a good hypothesis class? On the one hand, we want

to believe that this class includes the hypothesis that has no error at all (in the

PAC setting), or at least that the smallest error achievable by a hypothesis from

this class is indeed rather small (in the agnostic setting). On the other hand,

we have just seen that we cannot simply choose the richest class – the class of

all functions over the given domain. This tradeoff is discussed in the following

section.

5.2 Error Decomposition

To answer this question we decompose the error of an ERMH predictor into two

components as follows. Let hS be an ERMH hypothesis. Then, we can write

LD(hS) = εapp + εest where : εapp = min
h∈H

LD(h), εest = LD(hS)− εapp. (5.7)

• The Approximation Error – the minimum risk achievable by a predictor

in the hypothesis class. This term measures how much risk we have because

we restrict ourselves to a specific class, namely, how much inductive bias we

have. The approximation error does not depend on the sample size and is

determined by the hypothesis class chosen. Enlarging the hypothesis class

can decrease the approximation error.

Under the realizability assumption, the approximation error is zero. In

the agnostic case, however, the approximation error can be large.1

1 In fact, it always includes the error of the Bayes optimal predictor (see Chapter 3), the
minimal yet inevitable error, because of the possible nondeterminism of the world in this
model. Sometimes in the literature the term approximation error refers not to
minh∈H LD(h), but rather to the excess error over that of the Bayes optimal predictor,

namely, minh∈H LD(h)− εBayes.

5.3 Summary 65

• The Estimation Error – the difference between the approximation error

and the error achieved by the ERM predictor. The estimation error results

because the empirical risk (i.e., training error) is only an estimate of the

true risk, and so the predictor minimizing the empirical risk is only an

estimate of the predictor minimizing the true risk.

The quality of this estimation depends on the training set size and

on the size, or complexity, of the hypothesis class. As we have shown, for

a finite hypothesis class, εest increases (logarithmically) with |H| and de-

creases with m. We can think of the size ofH as a measure of its complexity.

In future chapters we will define other complexity measures of hypothesis

classes.

Since our goal is to minimize the total risk, we face a tradeoff, called the bias-

complexity tradeoff. On one hand, choosingH to be a very rich class decreases the

approximation error but at the same time might increase the estimation error,

as a rich H might lead to overfitting. On the other hand, choosing H to be a

very small set reduces the estimation error but might increase the approximation

error or, in other words, might lead to underfitting. Of course, a great choice for

H is the class that contains only one classifier – the Bayes optimal classifier. But

the Bayes optimal classifier depends on the underlying distribution D, which we

do not know (indeed, learning would have been unnecessary had we known D).

Learning theory studies how rich we can make H while still maintaining rea-

sonable estimation error. In many cases, empirical research focuses on designing

good hypothesis classes for a certain domain. Here, “good” means classes for

which the approximation error would not be excessively high. The idea is that

although we are not experts and do not know how to construct the optimal clas-

sifier, we still have some prior knowledge of the specific problem at hand, which

enables us to design hypothesis classes for which both the approximation error

and the estimation error are not too large. Getting back to our papayas example,

we do not know how exactly the color and hardness of a papaya predict its taste,

but we do know that papaya is a fruit and on the basis of previous experience

with other fruit we conjecture that a rectangle in the color-hardness space may

be a good predictor.

5.3 Summary

The No-Free-Lunch theorem states that there is no universal learner. Every

learner has to be specified to some task, and use some prior knowledge about

that task, in order to succeed. So far we have modeled our prior knowledge by

restricting our output hypothesis to be a member of a chosen hypothesis class.

When choosing this hypothesis class, we face a tradeoff, between a larger, or

more complex, class that is more likely to have a small approximation error,

and a more restricted class that would guarantee that the estimation error will

66 The Bias-Complexity Tradeoff

be small. In the next chapter we will study in more detail the behavior of the

estimation error. In Chapter 7 we will discuss alternative ways to express prior

knowledge.

5.4 Bibliographic Remarks

(Wolpert & Macready 1997) proved several no-free-lunch theorems for optimiza-

tion, but these are rather different from the theorem we prove here. The theorem

we prove here is closely related to lower bounds in VC theory, as we will study

in the next chapter.

5.5 Exercises

1. Prove that Equation (5.2) suffices for showing that P[LD(A(S)) ≥ 1/8] ≥ 1/7.

Hint: Let θ be a random variable that receives values in [0, 1] and whose

expectation satisfies E[θ] ≥ 1/4. Use Lemma B.1 to show that P[θ ≥ 1/8] ≥
1/7.

2. Assume you are asked to design a learning algorithm to predict whether pa-

tients are going to suffer a heart attack. Relevant patient features the al-

gorithm may have access to include blood pressure (BP), body-mass index

(BMI), age (A), level of physical activity (P), and income (I).

You have to choose between two algorithms; the first picks an axis aligned

rectangle in the two dimensional space spanned by the features BP and BMI

and the other picks an axis aligned rectangle in the five dimensional space

spanned by all the preceding features.

1. Explain the pros and cons of each choice.

2. Explain how the number of available labeled training samples will affect

your choice.

3. Prove that if |X | ≥ km for a positive integer k ≥ 2, then we can replace

the lower bound of 1/4 in the No-Free-Lunch theorem with k−1
2k = 1

2 −
1
2k .

Namely, let A be a learning algorithm for the task of binary classification. Let

m be any number smaller than |X |/k, representing a training set size. Then,

there exists a distribution D over X × {0, 1} such that:

• There exists a function f : X → {0, 1} with LD(f) = 0.

• ES∼Dm [LD(A(S))] ≥ 1
2 −

1
2k .

6 The VC-Dimension

In the previous chapter, we decomposed the error of the ERMH rule into ap-

proximation error and estimation error. The approximation error depends on

the fit of our prior knowledge (as reflected by the choice of the hypothesis class

H) to the underlying unknown distribution. In contrast, the definition of PAC

learnability requires that the estimation error would be bounded uniformly over

all distributions.

Our current goal is to figure out which classes H are PAC learnable, and to

characterize exactly the sample complexity of learning a given hypothesis class.

So far we have seen that finite classes are learnable, but that the class of all

functions (over an infinite size domain) is not. What makes one class learnable

and the other unlearnable? Can infinite-size classes be learnable, and, if so, what

determines their sample complexity?

We begin the chapter by showing that infinite classes can indeed be learn-

able, and thus, finiteness of the hypothesis class is not a necessary condition for

learnability. We then present a remarkably crisp characterization of the family

of learnable classes in the setup of binary valued classification with the zero-one

loss. This characterization was first discovered by Vladimir Vapnik and Alexey

Chervonenkis in 1970 and relies on a combinatorial notion called the Vapnik-

Chervonenkis dimension (VC-dimension). We formally define the VC-dimension,

provide several examples, and then state the fundamental theorem of statistical

learning theory, which integrates the concepts of learnability, VC-dimension, the

ERM rule, and uniform convergence.

6.1 Infinite-Size Classes Can Be Learnable

In Chapter 4 we saw that finite classes are learnable, and in fact the sample

complexity of a hypothesis class is upper bounded by the log of its size. To show

that the size of the hypothesis class is not the right characterization of its sample

complexity, we first present a simple example of an infinite-size hypothesis class

that is learnable.

Example 6.1 Let H be the set of threshold functions over the real line, namely,

H = {ha : a ∈ R}, where ha : R→ {0, 1} is a function such that ha(x) = 1[x<a].

To remind the reader, 1[x<a] is 1 if x < a and 0 otherwise. Clearly, H is of infinite

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

68 The VC-Dimension

size. Nevertheless, the following lemma shows that H is learnable in the PAC

model using the ERM algorithm.

Lemma 6.1 Let H be the class of thresholds as defined earlier. Then, H is

PAC learnable, using the ERM rule, with sample complexity of mH(ε, δ) ≤
dlog(2/δ)/εe.

Proof Let a? be a threshold such that the hypothesis h?(x) = 1[x<a?] achieves

LD(h?) = 0. Let Dx be the marginal distribution over the domain X and let

a0 < a? < a1 be such that

P
x∼Dx

[x ∈ (a0, a
?)] = P

x∼Dx
[x ∈ (a?, a1)] = ε.

a?a0 a1

ε mass ε mass

(If Dx(−∞, a?) ≤ ε we set a0 = −∞ and similarly for a1). Given a training set

S, let b0 = max{x : (x, 1) ∈ S} and b1 = min{x : (x, 0) ∈ S} (if no example in S

is positive we set b0 = −∞ and if no example in S is negative we set b1 = ∞).

Let bS be a threshold corresponding to an ERM hypothesis, hS , which implies

that bS ∈ (b0, b1). Therefore, a sufficient condition for LD(hS) ≤ ε is that both

b0 ≥ a0 and b1 ≤ a1. In other words,

P
S∼Dm

[LD(hS) > ε] ≤ P
S∼Dm

[b0 < a0 ∨ b1 > a1],

and using the union bound we can bound the preceding by

P
S∼Dm

[LD(hS) > ε] ≤ P
S∼Dm

[b0 < a0] + P
S∼Dm

[b1 > a1]. (6.1)

The event b0 < a0 happens if and only if all examples in S are not in the interval

(a0, a
∗), whose probability mass is defined to be ε, namely,

P
S∼Dm

[b0 < a0] = P
S∼Dm

[∀(x, y) ∈ S, x 6∈ (a0, a
?)] = (1− ε)m ≤ e−εm.

Since we assume m > log(2/δ)/ε it follows that the equation is at most δ/2.

In the same way it is easy to see that PS∼Dm [b1 > a1] ≤ δ/2. Combining with

Equation (6.1) we conclude our proof.

6.2 The VC-Dimension

We see, therefore, that while finiteness of H is a sufficient condition for learn-

ability, it is not a necessary condition. As we will show, a property called the

VC-dimension of a hypothesis class gives the correct characterization of its learn-

ability. To motivate the definition of the VC-dimension, let us recall the No-Free-

Lunch theorem (Theorem 5.1) and its proof. There, we have shown that without

6.2 The VC-Dimension 69

restricting the hypothesis class, for any learning algorithm, an adversary can

construct a distribution for which the learning algorithm will perform poorly,

while there is another learning algorithm that will succeed on the same distri-

bution. To do so, the adversary used a finite set C ⊂ X and considered a family

of distributions that are concentrated on elements of C. Each distribution was

derived from a “true” target function from C to {0, 1}. To make any algorithm

fail, the adversary used the power of choosing a target function from the set of

all possible functions from C to {0, 1}.
When considering PAC learnability of a hypothesis class H, the adversary

is restricted to constructing distributions for which some hypothesis h ∈ H
achieves a zero risk. Since we are considering distributions that are concentrated

on elements of C, we should study how H behaves on C, which leads to the

following definition.

definition 6.2 (Restriction of H to C) Let H be a class of functions from X
to {0, 1} and let C = {c1, . . . , cm} ⊂ X . The restriction of H to C is the set of

functions from C to {0, 1} that can be derived from H. That is,

HC = {(h(c1), . . . , h(cm)) : h ∈ H},

where we represent each function from C to {0, 1} as a vector in {0, 1}|C|.

If the restriction of H to C is the set of all functions from C to {0, 1}, then

we say that H shatters the set C. Formally:

definition 6.3 (Shattering) A hypothesis class H shatters a finite set C ⊂ X
if the restriction of H to C is the set of all functions from C to {0, 1}. That is,

|HC | = 2|C|.

Example 6.2 Let H be the class of threshold functions over R. Take a set

C = {c1}. Now, if we take a = c1 + 1, then we have ha(c1) = 1, and if we take

a = c1 − 1, then we have ha(c1) = 0. Therefore, HC is the set of all functions

from C to {0, 1}, and H shatters C. Now take a set C = {c1, c2}, where c1 ≤ c2.

No h ∈ H can account for the labeling (0, 1), because any threshold that assigns

the label 0 to c1 must assign the label 0 to c2 as well. Therefore not all functions

from C to {0, 1} are included in HC ; hence C is not shattered by H.

Getting back to the construction of an adversarial distribution as in the proof

of the No-Free-Lunch theorem (Theorem 5.1), we see that whenever some set C

is shattered by H, the adversary is not restricted by H, as they can construct

a distribution over C based on any target function from C to {0, 1}, while still

maintaining the realizability assumption. This immediately yields:

corollary 6.4 Let H be a hypothesis class of functions from X to {0, 1}. Let

m be a training set size. Assume that there exists a set C ⊂ X of size 2m that is

shattered by H. Then, for any learning algorithm, A, there exist a distribution D
over X × {0, 1} and a predictor h ∈ H such that LD(h) = 0 but with probability

of at least 1/7 over the choice of S ∼ Dm we have that LD(A(S)) ≥ 1/8.

70 The VC-Dimension

Corollary 6.4 tells us that if H shatters some set C of size 2m then we cannot

learn H using m examples. Intuitively, if a set C is shattered by H, and we

receive a sample containing half the instances of C, the labels of these instances

give us no information about the labels of the rest of the instances in C – every

possible labeling of the rest of the instances can be explained by some hypothesis

in H. Philosophically,

If someone can explain every phenomenon, his explanations are worthless.

This leads us directly to the definition of the VC dimension.

definition 6.5 (VC-dimension) The VC-dimension of a hypothesis class H,

denoted VCdim(H), is the maximal size of a set C ⊂ X that can be shattered

by H. If H can shatter sets of arbitrarily large size we say that H has infinite

VC-dimension.

A direct consequence of Corollary 6.4 is therefore:

theorem 6.6 Let H be a class of infinite VC-dimension. Then, H is not PAC

learnable.

Proof Since H has an infinite VC-dimension, for any training set size m, there

exists a shattered set of size 2m, and the claim follows by Corollary 6.4.

We shall see later in this chapter that the converse is also true: A finite VC-

dimension guarantees learnability. Hence, the VC-dimension characterizes PAC

learnability. But before delving into more theory, we first show several examples.

6.3 Examples

In this section we calculate the VC-dimension of several hypothesis classes. To

show that VCdim(H) = d we need to show that

1. There exists a set C of size d that is shattered by H.

2. Every set C of size d+ 1 is not shattered by H.

6.3.1 Threshold Functions

Let H be the class of threshold functions over R. Recall Example 6.2, where

we have shown that for an arbitrary set C = {c1}, H shatters C; therefore

VCdim(H) ≥ 1. We have also shown that for an arbitrary set C = {c1, c2} where

c1 ≤ c2, H does not shatter C. We therefore conclude that VCdim(H) = 1.

6.3 Examples 71

6.3.2 Intervals

Let H be the class of intervals over R, namely, H = {ha,b : a, b ∈ R, a < b},
where ha,b : R → {0, 1} is a function such that ha,b(x) = 1[x∈(a,b)]. Take the set

C = {1, 2}. Then, H shatters C (make sure you understand why) and therefore

VCdim(H) ≥ 2. Now take an arbitrary set C = {c1, c2, c3} and assume without

loss of generality that c1 ≤ c2 ≤ c3. Then, the labeling (1, 0, 1) cannot be obtained

by an interval and therefore H does not shatter C. We therefore conclude that

VCdim(H) = 2.

6.3.3 Axis Aligned Rectangles

Let H be the class of axis aligned rectangles, formally:

H = {h(a1,a2,b1,b2) : a1 ≤ a2 and b1 ≤ b2}

where

h(a1,a2,b1,b2)(x1, x2) =

{
1 if a1 ≤ x1 ≤ a2 and b1 ≤ x2 ≤ b2
0 otherwise

(6.2)

We shall show in the following that VCdim(H) = 4. To prove this we need

to find a set of 4 points that are shattered by H, and show that no set of 5

points can be shattered by H. Finding a set of 4 points that are shattered is

easy (see Figure 6.1). Now, consider any set C ⊂ R2 of 5 points. In C, take a

leftmost point (whose first coordinate is the smallest in C), a rightmost point

(first coordinate is the largest), a lowest point (second coordinate is the smallest),

and a highest point (second coordinate is the largest). Without loss of generality,

denote C = {c1, . . . , c5} and let c5 be the point that was not selected. Now,

define the labeling (1, 1, 1, 1, 0). It is impossible to obtain this labeling by an

axis aligned rectangle. Indeed, such a rectangle must contain c1, . . . , c4; but in

this case the rectangle contains c5 as well, because its coordinates are within

the intervals defined by the selected points. So, C is not shattered by H, and

therefore VCdim(H) = 4.

c1

c2

c3

c4 c5

Figure 6.1 Left: 4 points that are shattered by axis aligned rectangles. Right: Any axis
aligned rectangle cannot label c5 by 0 and the rest of the points by 1.

72 The VC-Dimension

6.3.4 Finite Classes

LetH be a finite class. Then, clearly, for any set C we have |HC | ≤ |H| and thus C

cannot be shattered if |H| < 2|C|. This implies that VCdim(H) ≤ log2(|H|). This

shows that the PAC learnability of finite classes follows from the more general

statement of PAC learnability of classes with finite VC-dimension, which we shall

see in the next section. Note, however, that the VC-dimension of a finite class

H can be significantly smaller than log2(|H|). For example, let X = {1, . . . , k},
for some integer k, and consider the class of threshold functions (as defined in

Example 6.2). Then, |H| = k but VCdim(H) = 1. Since k can be arbitrarily

large, the gap between log2(|H|) and VCdim(H) can be arbitrarily large.

6.3.5 VC-Dimension and the Number of Parameters

In the previous examples, the VC-dimension happened to equal the number of

parameters defining the hypothesis class. While this is often the case, it is not

always true. Consider, for example, the domain X = R, and the hypothesis class

H = {hθ : θ ∈ R} where hθ : X → {0, 1} is defined by hθ(x) = d0.5 sin(θx)e. It

is possible to prove that VCdim(H) = ∞, namely, for every d, one can find d

points that are shattered by H (see Exercise 8).

6.4 The Fundamental Theorem of PAC learning

We have already shown that a class of infinite VC-dimension is not learnable. The

converse statement is also true, leading to the fundamental theorem of statistical

learning theory:

theorem 6.7 (The Fundamental Theorem of Statistical Learning) Let H be a

hypothesis class of functions from a domain X to {0, 1} and let the loss function

be the 0− 1 loss. Then, the following are equivalent:

1. H has the uniform convergence property.

2. Any ERM rule is a successful agnostic PAC learner for H.

3. H is agnostic PAC learnable.

4. H is PAC learnable.

5. Any ERM rule is a successful PAC learner for H.

6. H has a finite VC-dimension.

The proof of the theorem is given in the next section.

Not only does the VC-dimension characterize PAC learnability; it even deter-

mines the sample complexity.

theorem 6.8 (The Fundamental Theorem of Statistical Learning – Quantita-

tive Version) Let H be a hypothesis class of functions from a domain X to {0, 1}
and let the loss function be the 0 − 1 loss. Assume that VCdim(H) = d < ∞.

Then, there are absolute constants C1, C2 such that:

6.5 Proof of Theorem 6.7 73

1. H has the uniform convergence property with sample complexity

C1
d+ log(1/δ)

ε2
≤ mUC

H (ε, δ) ≤ C2
d+ log(1/δ)

ε2

2. H is agnostic PAC learnable with sample complexity

C1
d+ log(1/δ)

ε2
≤ mH(ε, δ) ≤ C2

d+ log(1/δ)

ε2

3. H is PAC learnable with sample complexity

C1
d+ log(1/δ)

ε
≤ mH(ε, δ) ≤ C2

d log(1/ε) + log(1/δ)

ε

The proof of this theorem is given in Chapter 28.

Remark 6.3 We stated the fundamental theorem for binary classification tasks.

A similar result holds for some other learning problems such as regression with

the absolute loss or the squared loss. However, the theorem does not hold for

all learning tasks. In particular, learnability is sometimes possible even though

the uniform convergence property does not hold (we will see an example in

Chapter 13, Exercise 2). Furthermore, in some situations, the ERM rule fails

but learnability is possible with other learning rules.

6.5 Proof of Theorem 6.7

We have already seen that 1 → 2 in Chapter 4. The implications 2 → 3 and

3→ 4 are trivial and so is 2→ 5. The implications 4→ 6 and 5→ 6 follow from

the No-Free-Lunch theorem. The difficult part is to show that 6→ 1. The proof

is based on two main claims:

• If VCdim(H) = d, then even though H might be infinite, when restricting it

to a finite set C ⊂ X , its “effective” size, |HC |, is only O(|C|d). That is,

the size of HC grows polynomially rather than exponentially with |C|. This

claim is often referred to as Sauer’s lemma, but it has also been stated and

proved independently by Shelah and by Perles. The formal statement is

given in Section 6.5.1 later.

• In Section 4 we have shown that finite hypothesis classes enjoy the uniform

convergence property. In Section 6.5.2 later we generalize this result and

show that uniform convergence holds whenever the hypothesis class has a

“small effective size.” By “small effective size” we mean classes for which

|HC | grows polynomially with |C|.

6.5.1 Sauer’s Lemma and the Growth Function

We defined the notion of shattering, by considering the restriction of H to a finite

set of instances. The growth function measures the maximal “effective” size of

H on a set of m examples. Formally:

74 The VC-Dimension

definition 6.9 (Growth Function) Let H be a hypothesis class. Then the

growth function of H, denoted τH : N→ N, is defined as

τH(m) = max
C⊂X :|C|=m

∣∣HC∣∣ .
In words, τH(m) is the number of different functions from a set C of size m to

{0, 1} that can be obtained by restricting H to C.

Obviously, if VCdim(H) = d then for any m ≤ d we have τH(m) = 2m. In

such cases, H induces all possible functions from C to {0, 1}. The following beau-

tiful lemma, proposed independently by Sauer, Shelah, and Perles, shows that

when m becomes larger than the VC-dimension, the growth function increases

polynomially rather than exponentially with m.

lemma 6.10 (Sauer-Shelah-Perles) Let H be a hypothesis class with VCdim(H) ≤
d < ∞. Then, for all m, τH(m) ≤

∑d
i=0

(
m
i

)
. In particular, if m > d + 1 then

τH(m) ≤ (em/d)d.

Proof of Sauer’s Lemma *
To prove the lemma it suffices to prove the following stronger claim: For any

C = {c1, . . . , cm} we have

∀H, |HC | ≤ |{B ⊆ C : H shatters B}|. (6.3)

The reason why Equation (6.3) is sufficient to prove the lemma is that if VCdim(H) ≤
d then no set whose size is larger than d is shattered by H and therefore

|{B ⊆ C : H shatters B}| ≤
d∑
i=0

(
m

i

)
.

When m > d + 1 the right-hand side of the preceding is at most (em/d)d (see

Lemma A.5 in Appendix A).

We are left with proving Equation (6.3) and we do it using an inductive argu-

ment. For m = 1, no matter what H is, either both sides of Equation (6.3) equal

1 or both sides equal 2 (the empty set is always considered to be shattered by

H). Assume Equation (6.3) holds for sets of size k < m and let us prove it for

sets of size m. Fix H and C = {c1, . . . , cm}. Denote C ′ = {c2, . . . , cm} and in

addition, define the following two sets:

Y0 = {(y2, . . . , ym) : (0, y2, . . . , ym) ∈ HC ∨ (1, y2, . . . , ym) ∈ HC},

and

Y1 = {(y2, . . . , ym) : (0, y2, . . . , ym) ∈ HC ∧ (1, y2, . . . , ym) ∈ HC}.

It is easy to verify that |HC | = |Y0| + |Y1|. Additionally, since Y0 = HC′ , using

the induction assumption (applied on H and C ′) we have that

|Y0| = |HC′ | ≤ |{B ⊆ C ′ : H shatters B}| = |{B ⊆ C : c1 6∈ B ∧H shatters B}|.

6.5 Proof of Theorem 6.7 75

Next, define H′ ⊆ H to be

H′ = {h ∈ H : ∃h′ ∈ H s.t. (1− h′(c1), h′(c2), . . . , h′(cm))

= (h(c1), h(c2), . . . , h(cm)},

namely, H′ contains pairs of hypotheses that agree on C ′ and differ on c1. Using

this definition, it is clear that if H′ shatters a set B ⊆ C ′ then it also shatters

the set B∪{c1} and vice versa. Combining this with the fact that Y1 = H′C′ and

using the inductive assumption (now applied on H′ and C ′) we obtain that

|Y1| = |H′C′ | ≤ |{B ⊆ C ′ : H′ shatters B}| = |{B ⊆ C ′ : H′ shatters B ∪ {c1}}|
= |{B ⊆ C : c1 ∈ B ∧H′ shatters B}| ≤ |{B ⊆ C : c1 ∈ B ∧H shatters B}|.

Overall, we have shown that

|HC | = |Y0|+ |Y1|
≤ |{B ⊆ C : c1 6∈ B ∧H shatters B}|+ |{B ⊆ C : c1 ∈ B ∧H shatters B}|
= |{B ⊆ C : H shatters B}|,

which concludes our proof.

6.5.2 Uniform Convergence for Classes of Small Effective Size

In this section we prove that if H has small effective size then it enjoys the

uniform convergence property. Formally,

theorem 6.11 Let H be a class and let τH be its growth function. Then, for

every D and every δ ∈ (0, 1), with probability of at least 1− δ over the choice of

S ∼ Dm we have

|LD(h)− LS(h)| ≤
4 +

√
log(τH(2m))

δ
√

2m
.

Before proving the theorem, let us first conclude the proof of Theorem 6.7.

Proof of Theorem 6.7 It suffices to prove that if the VC-dimension is finite then

the uniform convergence property holds. We will prove that

mUC

H (ε, δ) ≤ 4
16d

(δε)2
log

(
16d

(δε)2

)
+

16 d log(2e/d)

(δε)2
.

From Sauer’s lemma we have that for m > d, τH(2m) ≤ (2em/d)d. Combining

this with Theorem 6.11 we obtain that with probability of at least 1− δ,

|LS(h)− LD(h)| ≤
4 +

√
d log(2em/d)

δ
√

2m
.

For simplicity assume that
√
d log(2em/d) ≥ 4; hence,

|LS(h)− LD(h)| ≤ 1

δ

√
2d log(2em/d)

m
.

76 The VC-Dimension

To ensure that the preceding is at most ε we need that

m ≥ 2d log(m)

(δε)2
+

2 d log(2e/d)

(δε)2
.

Standard algebraic manipulations (see Lemma A.2 in Appendix A) show that a

sufficient condition for the preceding to hold is that

m ≥ 4
2d

(δε)2
log

(
2d

(δε)2

)
+

4 d log(2e/d)

(δε)2
.

Remark 6.4 The upper bound on mUC

H we derived in the proof Theorem 6.7

is not the tightest possible. A tighter analysis that yields the bounds given in

Theorem 6.8 can be found in Chapter 28.

Proof of Theorem 6.11 *
We will start by showing that

E
S∼Dm

[
sup
h∈H
|LD(h)− LS(h)|

]
≤

4 +
√

log(τH(2m))√
2m

. (6.4)

Since the random variable suph∈H |LD(h) − LS(h)| is nonnegative, the proof of

the theorem follows directly from the preceding using Markov’s inequality (see

Section B.1).

To bound the left-hand side of Equation (6.4) we first note that for every

h ∈ H, we can rewrite LD(h) = ES′∼Dm [LS′(h)], where S′ = z′1, . . . , z
′
m is an

additional i.i.d. sample. Therefore,

E
S∼Dm

[
sup
h∈H
|LD(h)− LS(h)|

]
= E
S∼Dm

[
sup
h∈H

∣∣∣ E
S′∼Dm

LS′(h)− LS(h)
∣∣∣] .

A generalization of the triangle inequality yields∣∣∣ E
S′∼Dm

[LS′(h)− LS(h)]
∣∣∣ ≤ E

S′∼Dm
|LS′(h)− LS(h)|,

and the fact that supermum of expectation is smaller than expectation of supre-

mum yields

sup
h∈H

E
S′∼Dm

|LS′(h)− LS(h)| ≤ E
S′∼Dm

sup
h∈H
|LS′(h)− LS(h)|.

Formally, the previous two inequalities follow from Jensen’s inequality. Combin-

ing all we obtain

E
S∼Dm

[
sup
h∈H
|LD(h)− LS(h)|

]
≤ E
S,S′∼Dm

[
sup
h∈H
|LS′(h)− LS(h)|

]
= E
S,S′∼Dm

[
sup
h∈H

1

m

∣∣∣∣∣
m∑
i=1

(`(h, z′i)− `(h, zi))

∣∣∣∣∣
]
.

(6.5)

6.5 Proof of Theorem 6.7 77

The expectation on the right-hand side is over a choice of two i.i.d. samples

S = z1, . . . , zm and S′ = z′1, . . . , z
′
m. Since all of these 2m vectors are chosen

i.i.d., nothing will change if we replace the name of the random vector zi with the

name of the random vector z′i. If we do it, instead of the term (`(h, z′i)− `(h, zi))
in Equation (6.5) we will have the term −(`(h, z′i)− `(h, zi)). It follows that for

every σ ∈ {±1}m we have that Equation (6.5) equals

E
S,S′∼Dm

[
sup
h∈H

1

m

∣∣∣∣∣
m∑
i=1

σi(`(h, z
′
i)− `(h, zi))

∣∣∣∣∣
]

Since this holds for every σ ∈ {±1}m, it also holds if we sample each component

of σ uniformly at random from the uniform distribution over {±1}, denoted U±.

Hence, Equation (6.5) also equals

E
σ∼Um±

E
S,S′∼Dm

[
sup
h∈H

1

m

∣∣∣∣∣
m∑
i=1

σi(`(h, z
′
i)− `(h, zi))

∣∣∣∣∣
]
,

and by the linearity of expectation it also equals

E
S,S′∼Dm

E
σ∼Um±

[
sup
h∈H

1

m

∣∣∣∣∣
m∑
i=1

σi(`(h, z
′
i)− `(h, zi))

∣∣∣∣∣
]
.

Next, fix S and S′, and let C be the instances appearing in S and S′. Then, we

can take the supremum only over h ∈ HC . Therefore,

E
σ∼Um±

[
sup
h∈H

1

m

∣∣∣∣∣
m∑
i=1

σi(`(h, z
′
i)− `(h, zi))

∣∣∣∣∣
]

= E
σ∼Um±

[
max
h∈HC

1

m

∣∣∣∣∣
m∑
i=1

σi(`(h, z
′
i)− `(h, zi))

∣∣∣∣∣
]
.

Fix some h ∈ HC and denote θh = 1
m

∑m
i=1 σi(`(h, z

′
i)− `(h, zi)). Since E[θh] = 0

and θh is an average of independent variables, each of which takes values in

[−1, 1], we have by Hoeffding’s inequality that for every ρ > 0,

P[|θh| > ρ] ≤ 2 exp
(
−2mρ2

)
.

Applying the union bound over h ∈ HC , we obtain that for any ρ > 0,

P
[

max
h∈HC

|θh| > ρ

]
≤ 2 |HC | exp

(
−2mρ2

)
.

Finally, Lemma A.4 in Appendix A tells us that the preceding implies

E
[

max
h∈HC

|θh|
]
≤

4 +
√

log(|HC |)√
2m

.

Combining all with the definition of τH, we have shown that

E
S∼Dm

[
sup
h∈H
|LD(h)− LS(h)|

]
≤

4 +
√

log(τH(2m))√
2m

.

78 The VC-Dimension

6.6 Summary

The fundamental theorem of learning theory characterizes PAC learnability of

classes of binary classifiers using VC-dimension. The VC-dimension of a class

is a combinatorial property that denotes the maximal sample size that can be

shattered by the class. The fundamental theorem states that a class is PAC learn-

able if and only if its VC-dimension is finite and specifies the sample complexity

required for PAC learning. The theorem also shows that if a problem is at all

learnable, then uniform convergence holds and therefore the problem is learnable

using the ERM rule.

6.7 Bibliographic remarks

The definition of VC-dimension and its relation to learnability and to uniform

convergence is due to the seminal work of Vapnik & Chervonenkis (1971). The

relation to the definition of PAC learnability is due to Blumer, Ehrenfeucht,

Haussler & Warmuth (1989).

Several generalizations of the VC-dimension have been proposed. For exam-

ple, the fat-shattering dimension characterizes learnability of some regression

problems (Kearns, Schapire & Sellie 1994, Alon, Ben-David, Cesa-Bianchi &

Haussler 1997, Bartlett, Long & Williamson 1994, Anthony & Bartlet 1999), and

the Natarajan dimension characterizes learnability of some multiclass learning

problems (Natarajan 1989). However, in general, there is no equivalence between

learnability and uniform convergence. See (Shalev-Shwartz, Shamir, Srebro &

Sridharan 2010, Daniely, Sabato, Ben-David & Shalev-Shwartz 2011).

Sauer’s lemma has been proved by Sauer in response to a problem of Erdos

(Sauer 1972). Shelah (with Perles) proved it as a useful lemma for Shelah’s theory

of stable models (Shelah 1972). Gil Kalai tells1 us that at some later time, Benjy

Weiss asked Perles about such a result in the context of ergodic theory, and

Perles, who forgot that he had proved it once, proved it again. Vapnik and

Chervonenkis proved the lemma in the context of statistical learning theory.

6.8 Exercises

1. Show the following monotonicity property of VC-dimension: For every two

hypothesis classes if H′ ⊆ H then VCdim(H′) ≤ VCdim(H).

2. Given some finite domain set, X , and a number k ≤ |X |, figure out the VC-

dimension of each of the following classes (and prove your claims):

1. HX=k = {h ∈ {0, 1}X : |{x : h(x) = 1}| = k}. That is, the set of all functions

that assign the value 1 to exactly k elements of X .

1 http://gilkalai.wordpress.com/2008/09/28/

extremal-combinatorics-iii-some-basic-theorems

http://gilkalai.wordpress.com/2008/09/28/extremal-combinatorics-iii-some-basic-theorems
http://gilkalai.wordpress.com/2008/09/28/extremal-combinatorics-iii-some-basic-theorems

6.8 Exercises 79

2. Hat−most−k = {h ∈ {0, 1}X : |{x : h(x) = 1}| ≤ k or |{x : h(x) = 0}| ≤ k}.
3. Let X be the Boolean hypercube {0, 1}n. For a set I ⊆ {1, 2, . . . , n} we define

a parity function hI as follows. On a binary vector x = (x1, x2, . . . , xn) ∈
{0, 1}n,

hI(x) =

(∑
i∈I

xi

)
mod 2 .

(That is, hI computes parity of bits in I.) What is the VC-dimension of the

class of all such parity functions, Hn-parity = {hI : I ⊆ {1, 2, . . . , n}}?
4. We proved Sauer’s lemma by proving that for every class H of finite VC-

dimension d, and every subset A of the domain,

|HA| ≤ |{B ⊆ A : H shatters B}| ≤
d∑
i=0

(
|A|
i

)
.

Show that there are cases in which the previous two inequalities are strict

(namely, the ≤ can be replaced by <) and cases in which they can be replaced

by equalities. Demonstrate all four combinations of = and <.

5. VC-dimension of axis aligned rectangles in Rd: Let Hdrec be the class of

axis aligned rectangles in Rd. We have already seen that VCdim(H2
rec) = 4.

Prove that in general, VCdim(Hdrec) = 2d.

6. VC-dimension of Boolean conjunctions: LetHdcon be the class of Boolean

conjunctions over the variables x1, . . . , xd (d ≥ 2). We already know that this

class is finite and thus (agnostic) PAC learnable. In this question we calculate

VCdim(Hdcon).

1. Show that |Hdcon| ≤ 3d + 1.

2. Conclude that VCdim(H) ≤ d log 3.

3. Show that Hdcon shatters the set of unit vectors {ei : i ≤ d}.
4. (**) Show that VCdim(Hdcon) ≤ d.

Hint: Assume by contradiction that there exists a set C = {c1, . . . , cd+1}
that is shattered by Hdcon. Let h1, . . . , hd+1 be hypotheses in Hdcon that

satisfy

∀i, j ∈ [d+ 1], hi(cj) =

{
0 i = j

1 otherwise

For each i ∈ [d + 1], hi (or more accurately, the conjunction that corre-

sponds to hi) contains some literal `i which is false on ci and true on cj
for each j 6= i. Use the Pigeonhole principle to show that there must be a

pair i < j ≤ d + 1 such that `i and `j use the same xk and use that fact

to derive a contradiction to the requirements from the conjunctions hi, hj .

5. Consider the class Hdmcon of monotone Boolean conjunctions over {0, 1}d.
Monotonicity here means that the conjunctions do not contain negations.

80 The VC-Dimension

As in Hdcon, the empty conjunction is interpreted as the all-positive hy-

pothesis. We augment Hdmcon with the all-negative hypothesis h−. Show

that VCdim(Hdmcon) = d.

7. We have shown that for a finite hypothesis class H, VCdim(H) ≤ blog(|H|)c.
However, this is just an upper bound. The VC-dimension of a class can be

much lower than that:

1. Find an example of a class H of functions over the real interval X = [0, 1]

such that H is infinite while VCdim(H) = 1.

2. Give an example of a finite hypothesis class H over the domain X = [0, 1],

where VCdim(H) = blog2(|H|)c.
8. (*) It is often the case that the VC-dimension of a hypothesis class equals (or

can be bounded above by) the number of parameters one needs to set in order

to define each hypothesis in the class. For instance, if H is the class of axis

aligned rectangles in Rd, then VCdim(H) = 2d, which is equal to the number

of parameters used to define a rectangle in Rd. Here is an example that shows

that this is not always the case. We will see that a hypothesis class might

be very complex and even not learnable, although it has a small number of

parameters.

Consider the domain X = R, and the hypothesis class

H = {x 7→ dsin(θx)e : θ ∈ R}

(here, we take d−1e = 0). Prove that VCdim(H) =∞.

Hint: There is more than one way to prove the required result. One option

is by applying the following lemma: If 0.x1x2x3 . . ., is the binary expansion of

x ∈ (0, 1), then for any natural number m, dsin(2mπx)e = (1−xm), provided

that ∃k ≥ m s.t. xk = 1.

9. Let H be the class of signed intervals, that is,

H = {ha,b,s : a ≤ b, s ∈ {−1, 1}} where

ha,b,s(x) =

{
s if x ∈ [a, b]

−s if x /∈ [a, b]

Calculate VCdim(H).

10. Let H be a class of functions from X to {0, 1}.
1. Prove that if VCdim(H) ≥ d, for any d, then for some probability distri-

bution D over X × {0, 1}, for every sample size, m,

E
S∼Dm

[LD(A(S))] ≥ min
h∈H

LD(h) +
d−m

2d

Hint: Use Exercise 3 in Chapter 5.

2. Prove that for every H that is PAC learnable, VCdim(H) <∞. (Note that

this is the implication 3→ 6 in Theorem 6.7.)

11. VC of union: Let H1, . . . ,Hr be hypothesis classes over some fixed domain

set X . Let d = maxi VCdim(Hi) and assume for simplicity that d ≥ 3.

6.8 Exercises 81

1. Prove that

VCdim (∪ri=1Hi) ≤ 4d log(2d) + 2 log(r) .

Hint: Take a set of k examples and assume that they are shattered by

the union class. Therefore, the union class can produce all 2k possible

labelings on these examples. Use Sauer’s lemma to show that the union

class cannot produce more than rkd labelings. Therefore, 2k < rkd. Now

use Lemma A.2.

2. (*) Prove that for r = 2 it holds that

VCdim (H1 ∪H2) ≤ 2d+ 1.

12. Dudley classes: In this question we discuss an algebraic framework for

defining concept classes over Rn and show a connection between the VC

dimension of such classes and their algebraic properties. Given a function

f : Rn → R we define the corresponding function, POS (f)(x) = 1[f(x)>0]. For

a class F of real valued functions we define a corresponding class of functions

POS (F) = {POS (f) : f ∈ F}. We say that a family, F , of real valued func-

tions is linearly closed if for all f, g ∈ F and r ∈ R, (f + rg) ∈ F (where

addition and scalar multiplication of functions are defined point wise, namely,

for all x ∈ Rn, (f + rg)(x) = f(x) + rg(x)). Note that if a family of functions

is linearly closed then we can view it as a vector space over the reals. For a

function g : Rn → R and a family of functions F , let F+g
def
= {f+g : f ∈ F}.

Hypothesis classes that have a representation as POS (F + g) for some vector

space of functions F and some function g are called Dudley classes.

1. Show that for every g : Rn → R and every vector space of functions F as

defined earlier, VCdim(POS (F + g)) = VCdim(POS (F)).

2. (**) For every linearly closed family of real valued functions F , the VC-

dimension of the corresponding class POS (F) equals the linear dimension

of F (as a vector space). Hint: Let f1, . . . , fd be a basis for the vector space

F . Consider the mapping x 7→ (f1(x), . . . , fd(x)) (from Rn to Rd). Note

that this mapping induces a matching between functions over Rn of the

form POS (f) and homogeneous linear halfspaces in Rd (the VC-dimension

of the class of homogeneous linear halfspaces is analyzed in Chapter 9).

3. Show that each of the following classes can be represented as a Dudley

class:

1. The class HSn of halfspaces over Rn (see Chapter 9).

2. The class HHSn of all homogeneous halfspaces over Rn (see Chapter 9).

3. The class Bd of all functions defined by (open) balls in Rd. Use the

Dudley representation to figure out the VC-dimension of this class.

4. Let P dn denote the class of functions defined by polynomial inequalities

of degree ≤ d, namely,

P dn = {hp : p is a polynomial of degree ≤ d in the variables x1, . . . , xn},

82 The VC-Dimension

where, for x = (x1. . . . , xn), hp(x) = 1[p(x)≥0] (the degree of a multi-

variable polynomial is the maximal sum of variable exponents over all

of its terms. For example, the degree of p(x) = 3x3
1x

2
2 + 4x3x

2
7 is 5).

1. Use the Dudley representation to figure out the VC-dimension of the

class P d1 – the class of all d-degree polynomials over R.

2. Prove that the class of all polynomial classifiers over R has infinite

VC-dimension.

3. Use the Dudley representation to figure out the VC-dimension of the

class P dn (as a function of d and n).

7 Nonuniform Learnability

The notions of PAC learnability discussed so far in the book allow the sample

sizes to depend on the accuracy and confidence parameters, but they are uniform

with respect to the labeling rule and the underlying data distribution. Conse-

quently, classes that are learnable in that respect are limited (they must have

a finite VC-dimension, as stated by Theorem 6.7). In this chapter we consider

more relaxed, weaker notions of learnability. We discuss the usefulness of such

notions and provide characterization of the concept classes that are learnable

using these definitions.

We begin this discussion by defining a notion of “nonuniform learnability” that

allows the sample size to depend on the hypothesis to which the learner is com-

pared. We then provide a characterization of nonuniform learnability and show

that nonuniform learnability is a strict relaxation of agnostic PAC learnability.

We also show that a sufficient condition for nonuniform learnability is that H is

a countable union of hypothesis classes, each of which enjoys the uniform con-

vergence property. These results will be proved in Section 7.2 by introducing a

new learning paradigm, which is called Structural Risk Minimization (SRM). In

Section 7.3 we specify the SRM paradigm for countable hypothesis classes, which

yields the Minimum Description Length (MDL) paradigm. The MDL paradigm

gives a formal justification to a philosophical principle of induction called Oc-

cam’s razor. Next, in Section 7.4 we introduce consistency as an even weaker

notion of learnability. Finally, we discuss the significance and usefulness of the

different notions of learnability.

7.1 Nonuniform Learnability

“Nonuniform learnability” allows the sample size to be nonuniform with respect

to the different hypotheses with which the learner is competing. We say that a

hypothesis h is (ε, δ)-competitive with another hypothesis h′ if, with probability

higher than (1− δ),

LD(h) ≤ LD(h′) + ε.

In PAC learnability, this notion of “competitiveness” is not very useful, as we

are looking for a hypothesis with an absolute low risk (in the realizable case) or

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

84 Nonuniform Learnability

with a low risk compared to the minimal risk achieved by hypotheses in our class

(in the agnostic case). Therefore, the sample size depends only on the accuracy

and confidence parameters. In nonuniform learnability, however, we allow the

sample size to be of the form mH(ε, δ, h); namely, it depends also on the h with

which we are competing. Formally,

definition 7.1 A hypothesis class H is nonuniformly learnable if there exist a

learning algorithm, A, and a function mNUL

H : (0, 1)2×H → N such that, for every

ε, δ ∈ (0, 1) and for every h ∈ H, if m ≥ mNUL

H (ε, δ, h) then for every distribution

D, with probability of at least 1− δ over the choice of S ∼ Dm, it holds that

LD(A(S)) ≤ LD(h) + ε.

At this point it might be useful to recall the definition of agnostic PAC learn-

ability (Definition 3.3):

A hypothesis class H is agnostically PAC learnable if there exist a learning algo-

rithm, A, and a function mH : (0, 1)2 → N such that, for every ε, δ ∈ (0, 1) and

for every distribution D, if m ≥ mH(ε, δ), then with probability of at least 1− δ
over the choice of S ∼ Dm it holds that

LD(A(S)) ≤ min
h′∈H

LD(h′) + ε.

Note that this implies that for every h ∈ H

LD(A(S)) ≤ LD(h) + ε.

In both types of learnability, we require that the output hypothesis will be

(ε, δ)-competitive with every other hypothesis in the class. But the difference

between these two notions of learnability is the question of whether the sample

size m may depend on the hypothesis h to which the error of A(S) is compared.

Note that that nonuniform learnability is a relaxation of agnostic PAC learn-

ability. That is, if a class is agnostic PAC learnable then it is also nonuniformly

learnable.

7.1.1 Characterizing Nonuniform Learnability

Our goal now is to characterize nonuniform learnability. In the previous chapter

we have found a crisp characterization of PAC learnable classes, by showing

that a class of binary classifiers is agnostic PAC learnable if and only if its VC-

dimension is finite. In the following theorem we find a different characterization

for nonuniform learnable classes for the task of binary classification.

theorem 7.2 A hypothesis class H of binary classifiers is nonuniformly learn-

able if and only if it is a countable union of agnostic PAC learnable hypothesis

classes.

The proof of Theorem 7.2 relies on the following result of independent interest:

7.2 Structural Risk Minimization 85

theorem 7.3 Let H be a hypothesis class that can be written as a countable

union of hypothesis classes, H =
⋃
n∈NHn, where each Hn enjoys the uniform

convergence property. Then, H is nonuniformly learnable.

Recall that in Chapter 4 we have shown that uniform convergence is sufficient

for agnostic PAC learnability. Theorem 7.3 generalizes this result to nonuni-

form learnability. The proof of this theorem will be given in the next section by

introducing a new learning paradigm. We now turn to proving Theorem 7.2.

Proof of Theorem 7.2 First assume that H =
⋃
n∈NHn where each Hn is ag-

nostic PAC learnable. Using the fundamental theorem of statistical learning, it

follows that each Hn has the uniform convergence property. Therefore, using

Theorem 7.3 we obtain that H is nonuniform learnable.

For the other direction, assume that H is nonuniform learnable using some

algorithm A. For every n ∈ N, let Hn = {h ∈ H : mNUL

H (1/8, 1/7, h) ≤ n}.
Clearly, H = ∪n∈NHn. In addition, using the definition of mNUL

H we know that

for any distribution D that satisfies the realizability assumption with respect to

Hn, with probability of at least 6/7 over S ∼ Dn we have that LD(A(S)) ≤ 1/8.

Using the fundamental theorem of statistical learning, this implies that the VC-

dimension of Hn must be finite, and therefore Hn is agnostic PAC learnable.

The following example shows that nonuniform learnability is a strict relax-

ation of agnostic PAC learnability; namely, there are hypothesis classes that are

nonuniform learnable but are not agnostic PAC learnable.

Example 7.1 Consider a binary classification problem with the instance domain

being X = R. For every n ∈ N let Hn be the class of polynomial classifiers of

degree n; namely, Hn is the set of all classifiers of the form h(x) = sign(p(x))

where p : R→ R is a polynomial of degree n. Let H =
⋃
n∈NHn. Therefore, H is

the class of all polynomial classifiers over R. It is easy to verify that VCdim(H) =

∞ while VCdim(Hn) = n+ 1 (see Exercise 12). Hence, H is not PAC learnable,

while on the basis of Theorem 7.3, H is nonuniformly learnable.

7.2 Structural Risk Minimization

So far, we have encoded our prior knowledge by specifying a hypothesis class

H, which we believe includes a good predictor for the learning task at hand.

Yet another way to express our prior knowledge is by specifying preferences over

hypotheses within H. In the Structural Risk Minimization (SRM) paradigm,

we do so by first assuming that H can be written as H =
⋃
n∈NHn and then

specifying a weight function, w : N → [0, 1], which assigns a weight to each

hypothesis class, Hn, such that a higher weight reflects a stronger preference

for the hypothesis class. In this section we discuss how to learn with such prior

knowledge. In the next section we describe a couple of important weighting

schemes, including Minimum Description Length.

86 Nonuniform Learnability

Concretely, let H be a hypothesis class that can be written as H =
⋃
n∈NHn.

For example, H may be the class of all polynomial classifiers where each Hn is

the class of polynomial classifiers of degree n (see Example 7.1). Assume that for

each n, the class Hn enjoys the uniform convergence property (see Definition 4.3

in Chapter 4) with a sample complexity function mUC

Hn(ε, δ). Let us also define

the function εn : N× (0, 1)→ (0, 1) by

εn(m, δ) = min{ε ∈ (0, 1) : mUC

Hn(ε, δ) ≤ m}. (7.1)

In words, we have a fixed sample size m, and we are interested in the lowest

possible upper bound on the gap between empirical and true risks achievable by

using a sample of m examples.

From the definitions of uniform convergence and εn, it follows that for every

m and δ, with probability of at least 1 − δ over the choice of S ∼ Dm we have

that

∀h ∈ Hn, |LD(h)− LS(h)| ≤ εn(m, δ). (7.2)

Let w : N → [0, 1] be a function such that
∑∞
n=1 w(n) ≤ 1. We refer to w as

a weight function over the hypothesis classes H1,H2, Such a weight function

can reflect the importance that the learner attributes to each hypothesis class,

or some measure of the complexity of different hypothesis classes. If H is a finite

union of N hypothesis classes, one can simply assign the same weight of 1/N to

all hypothesis classes. This equal weighting corresponds to no a priori preference

to any hypothesis class. Of course, if one believes (as prior knowledge) that a

certain hypothesis class is more likely to contain the correct target function,

then it should be assigned a larger weight, reflecting this prior knowledge. When

H is a (countable) infinite union of hypothesis classes, a uniform weighting is

not possible but many other weighting schemes may work. For example, one can

choose w(n) = 6
π2n2 or w(n) = 2−n. Later in this chapter we will provide another

convenient way to define weighting functions using description languages.

The SRM rule follows a “bound minimization” approach. This means that

the goal of the paradigm is to find a hypothesis that minimizes a certain upper

bound on the true risk. The bound that the SRM rule wishes to minimize is

given in the following theorem.

theorem 7.4 Let w : N → [0, 1] be a function such that
∑∞
n=1 w(n) ≤ 1. Let

H be a hypothesis class that can be written as H =
⋃
n∈NHn, where for each n,

Hn satisfies the uniform convergence property with a sample complexity function

mUC

Hn . Let εn be as defined in Equation (7.1). Then, for every δ ∈ (0, 1) and

distribution D, with probability of at least 1− δ over the choice of S ∼ Dm, the

following bound holds (simultaneously) for every n ∈ N and h ∈ Hn.

|LD(h)− LS(h)| ≤ εn(m,w(n) · δ).

Therefore, for every δ ∈ (0, 1) and distribution D, with probability of at least

7.2 Structural Risk Minimization 87

1− δ it holds that

∀h ∈ H, LD(h) ≤ LS(h) + min
n:h∈Hn

εn(m,w(n) · δ). (7.3)

Proof For each n define δn = w(n)δ. Applying the assumption that uniform

convergence holds for all n with the rate given in Equation (7.2), we obtain that

if we fix n in advance, then with probability of at least 1− δn over the choice of

S ∼ Dm,

∀h ∈ Hn, |LD(h)− LS(h)| ≤ εn(m, δn).

Applying the union bound over n = 1, 2, . . ., we obtain that with probability of

at least 1−
∑
n δn = 1− δ

∑
n w(n) ≥ 1− δ, the preceding holds for all n, which

concludes our proof.

Denote

n(h) = min{n : h ∈ Hn}, (7.4)

and then Equation (7.3) implies that

LD(h) ≤ LS(h) + εn(h)(m,w(n(h)) · δ).

The SRM paradigm searches for h that minimizes this bound, as formalized

in the following pseudocode:

Structural Risk Minimization (SRM)

prior knowledge:

H =
⋃
nHn where Hn has uniform convergence with mUC

Hn
w : N→ [0, 1] where

∑
n w(n) ≤ 1

define: εn as in Equation (7.1) ; n(h) as in Equation (7.4)

input: training set S ∼ Dm, confidence δ

output: h ∈ argminh∈H
[
LS(h) + εn(h)(m,w(n(h)) · δ)

]
Unlike the ERM paradigm discussed in previous chapters, we no longer just care

about the empirical risk, LS(h), but we are willing to trade some of our bias

toward low empirical risk with a bias toward classes for which εn(h)(m,w(n(h))·δ)
is smaller, for the sake of a smaller estimation error.

Next we show that the SRM paradigm can be used for nonuniform learning

of every class, which is a countable union of uniformly converging hypothesis

classes.

theorem 7.5 Let H be a hypothesis class such that H =
⋃
n∈NHn, where

each Hn has the uniform convergence property with sample complexity mUC

Hn . Let

w : N → [0, 1] be such that w(n) = 6
n2π2 . Then, H is nonuniformly learnable

using the SRM rule with rate

mNUL

H (ε, δ, h) ≤ mUC

Hn(h)

(
ε/2 , 6δ

(πn(h))2

)
.

88 Nonuniform Learnability

Proof Let A be the SRM algorithm with respect to the weighting function w.

For every h ∈ H, ε, and δ, let m ≥ mUC

Hn(h)
(ε, w(n(h))δ). Using the fact that∑

n w(n) = 1, we can apply Theorem 7.4 to get that, with probability of at least

1− δ over the choice of S ∼ Dm, we have that for every h′ ∈ H,

LD(h′) ≤ LS(h′) + εn(h′)(m,w(n(h′))δ).

The preceding holds in particular for the hypothesis A(S) returned by the SRM

rule. By the definition of SRM we obtain that

LD(A(S)) ≤ min
h′

[
LS(h′) + εn(h′)(m,w(n(h′))δ)

]
≤ LS(h) + εn(h)(m,w(n(h))δ).

Finally, if m ≥ mUC

Hn(h)
(ε/2, w(n(h))δ) then clearly εn(h)(m,w(n(h))δ) ≤ ε/2. In

addition, from the uniform convergence property of each Hn we have that with

probability of more than 1− δ,

LS(h) ≤ LD(h) + ε/2.

Combining all the preceding we obtain that LD(A(S)) ≤ LD(h) + ε, which con-

cludes our proof.

Note that the previous theorem also proves Theorem 7.3.

Remark 7.2 (No-Free-Lunch for Nonuniform Learnability) We have shown that

any countable union of classes of finite VC-dimension is nonuniformly learnable.

It turns out that, for any infinite domain set, X , the class of all binary valued

functions over X is not a countable union of classes of finite VC-dimension. We

leave the proof of this claim as a (nontrivial) exercise (see Exercise 5). It follows

that, in some sense, the no free lunch theorem holds for nonuniform learning

as well: namely, whenever the domain is not finite, there exists no nonuniform

learner with respect to the class of all deterministic binary classifiers (although

for each such classifier there exists a trivial algorithm that learns it – ERM with

respect to the hypothesis class that contains only this classifier).

It is interesting to compare the nonuniform learnability result given in The-

orem 7.5 to the task of agnostic PAC learning any specific Hn separately. The

prior knowledge, or bias, of a nonuniform learner for H is weaker – it is searching

for a model throughout the entire class H, rather than being focused on one spe-

cific Hn. The cost of this weakening of prior knowledge is the increase in sample

complexity needed to compete with any specific h ∈ Hn. For a concrete evalua-

tion of this gap, consider the task of binary classification with the zero-one loss.

Assume that for all n, VCdim(Hn) = n. Since mUC

Hn(ε, δ) = C n+log(1/δ)
ε2 (where

C is the contant appearing in Theorem 6.8), a straightforward calculation shows

that

mNUL

H (ε, δ, h)−mUC

Hn(ε/2, δ) ≤ 4C
2 log(2n)

ε2
.

That is, the cost of relaxing the learner’s prior knowledge from a specific Hn
that contains the target h to a countable union of classes depends on the log of

7.3 Minimum Description Length and Occam’s Razor 89

the index of the first class in which h resides. That cost increases with the index

of the class, which can be interpreted as reflecting the value of knowing a good

priority order on the hypotheses in H.

7.3 Minimum Description Length and Occam’s Razor

Let H be a countable hypothesis class. Then, we can write H as a countable

union of singleton classes, namely, H =
⋃
n∈N{hn}. By Hoeffding’s inequality

(Lemma 4.5), each singleton class has the uniform convergence property with

rate mUC(ε, δ) = log(2/δ)
2ε2 . Therefore, the function εn given in Equation (7.1)

becomes εn(m, δ) =
√

log(2/δ)
2m and the SRM rule becomes

argmin
hn∈H

[
LS(h) +

√
− log(w(n)) + log(2/δ)

2m

]
.

Equivalently, we can think of w as a function from H to [0, 1], and then the SRM

rule becomes

argmin
h∈H

[
LS(h) +

√
− log(w(h)) + log(2/δ)

2m

]
.

It follows that in this case, the prior knowledge is solely determined by the weight

we assign to each hypothesis. We assign higher weights to hypotheses that we

believe are more likely to be the correct one, and in the learning algorithm we

prefer hypotheses that have higher weights.

In this section we discuss a particular convenient way to define a weight func-

tion over H, which is derived from the length of descriptions given to hypotheses.

Having a hypothesis class, one can wonder about how we describe, or represent,

each hypothesis in the class. We naturally fix some description language. This

can be English, or a programming language, or some set of mathematical formu-

las. In any of these languages, a description consists of finite strings of symbols

(or characters) drawn from some fixed alphabet. We shall now formalize these

notions.

Let H be the hypothesis class we wish to describe. Fix some finite set Σ

of symbols (or “characters”), which we call the alphabet. For concreteness, we

let Σ = {0, 1}. A string is a finite sequence of symbols from Σ; for example,

σ = (0, 1, 1, 1, 0) is a string of length 5. We denote by |σ| the length of a string.

The set of all finite length strings is denoted Σ∗. A description language for H
is a function d : H → Σ∗, mapping each member h of H to a string d(h). d(h) is

called “the description of h,” and its length is denoted by |h|.
We shall require that description languages be prefix-free; namely, for every

distinct h, h′, d(h) is not a prefix of d(h′). That is, we do not allow that any

string d(h) is exactly the first |h| symbols of any longer string d(h′). Prefix-free

collections of strings enjoy the following combinatorial property:

90 Nonuniform Learnability

lemma 7.6 (Kraft Inequality) If S ⊆ {0, 1}∗ is a prefix-free set of strings, then∑
σ∈S

1

2|σ|
≤ 1.

Proof Define a probability distribution over the members of S as follows: Re-

peatedly toss an unbiased coin, with faces labeled 0 and 1, until the sequence

of outcomes is a member of S; at that point, stop. For each σ ∈ S, let P (σ)

be the probability that this process generates the string σ. Note that since S is

prefix-free, for every σ ∈ S, if the coin toss outcomes follow the bits of σ then

we will stop only once the sequence of outcomes equals σ. We therefore get that,

for every σ ∈ S, P (σ) = 1
2|σ|

. Since probabilities add up to at most 1, our proof

is concluded.

In light of Kraft’s inequality, any prefix-free description language of a hypoth-

esis class, H, gives rise to a weighting function w over that hypothesis class – we

will simply set w(h) = 1
2|h|

. This observation immediately yields the following:

theorem 7.7 Let H be a hypothesis class and let d : H → {0, 1}∗ be a prefix-

free description language for H. Then, for every sample size, m, every confidence

parameter, δ > 0, and every probability distribution, D, with probability greater

than 1− δ over the choice of S ∼ Dm we have that,

∀h ∈ H, LD(h) ≤ LS(h) +

√
|h|+ ln(2/δ)

2m
,

where |h| is the length of d(h).

Proof Choose w(h) = 1/2|h|, apply Theorem 7.4 with εn(m, δ) =
√

ln(2/δ)
2m , and

note that ln(2|h|) = |h| ln(2) < |h|.

As was the case with Theorem 7.4, this result suggests a learning paradigm

for H – given a training set, S, search for a hypothesis h ∈ H that minimizes

the bound, LS(h) +
√
|h|+ln(2/δ)

2m . In particular, it suggests trading off empirical

risk for saving description length. This yields the Minimum Description Length

learning paradigm.

Minimum Description Length (MDL)

prior knowledge:

H is a countable hypothesis class

H is described by a prefix-free language over {0, 1}
For every h ∈ H, |h| is the length of the representation of h

input: A training set S ∼ Dm, confidence δ

output: h ∈ argminh∈H

[
LS(h) +

√
|h|+ln(2/δ)

2m

]
Example 7.3 Let H be the class of all predictors that can be implemented using

some programming language, say, C++. Let us represent each program using the

7.3 Minimum Description Length and Occam’s Razor 91

binary string obtained by running the gzip command on the program (this yields

a prefix-free description language over the alphabet {0, 1}). Then, |h| is simply

the length (in bits) of the output of gzip when running on the C++ program

corresponding to h.

7.3.1 Occam’s Razor

Theorem 7.7 suggests that, having two hypotheses sharing the same empirical

risk, the true risk of the one that has shorter description can be bounded by a

lower value. Thus, this result can be viewed as conveying a philosophical message:

A short explanation (that is, a hypothesis that has a short length) tends to be more valid
than a long explanation.

This is a well known principle, called Occam’s razor, after William of Ockham,

a 14th-century English logician, who is believed to have been the first to phrase

it explicitly. Here, we provide one possible justification to this principle. The

inequality of Theorem 7.7 shows that the more complex a hypothesis h is (in the

sense of having a longer description), the larger the sample size it has to fit to

guarantee that it has a small true risk, LD(h).

At a second glance, our Occam razor claim might seem somewhat problematic.

In the context in which the Occam razor principle is usually invoked in science,

the language according to which complexity is measured is a natural language,

whereas here we may consider any arbitrary abstract description language. As-

sume that we have two hypotheses such that |h′| is much smaller than |h|. By

the preceding result, if both have the same error on a given training set, S, then

the true error of h may be much higher than the true error of h′, so one should

prefer h′ over h. However, we could have chosen a different description language,

say, one that assigns a string of length 3 to h and a string of length 100000 to h′.

Suddenly it looks as if one should prefer h over h′. But these are the same h and

h′ for which we argued two sentences ago that h′ should be preferable. Where is

the catch here?

Indeed, there is no inherent generalizability difference between hypotheses.

The crucial aspect here is the dependency order between the initial choice of

language (or, preference over hypotheses) and the training set. As we know from

the basic Hoeffding’s bound (Equation (4.2)), if we commit to any hypothesis be-

fore seeing the data, then we are guaranteed a rather small estimation error term

LD(h) ≤ LS(h) +
√

ln(2/δ)
2m . Choosing a description language (or, equivalently,

some weighting of hypotheses) is a weak form of committing to a hypothesis.

Rather than committing to a single hypothesis, we spread out our commitment

among many. As long as it is done independently of the training sample, our gen-

eralization bound holds. Just as the choice of a single hypothesis to be evaluated

by a sample can be arbitrary, so is the choice of description language.

92 Nonuniform Learnability

7.4 Other Notions of Learnability – Consistency

The notion of learnability can be further relaxed by allowing the needed sample

sizes to depend not only on ε, δ, and h but also on the underlying data-generating

probability distribution D (that is used to generate the training sample and to

determine the risk). This type of performance guarantee is captured by the notion

of consistency1 of a learning rule.

definition 7.8 (Consistency) Let Z be a domain set, let P be a set of

probability distributions over Z, and let H be a hypothesis class. A learn-

ing rule A is consistent with respect to H and P if there exists a function

mCON

H : (0, 1)2 ×H × P → N such that, for every ε, δ ∈ (0, 1), every h ∈ H, and

every D ∈ P, if m ≥ mNUL

H (ε, δ, h,D) then with probability of at least 1− δ over

the choice of S ∼ Dm it holds that

LD(A(S)) ≤ LD(h) + ε.

If P is the set of all distributions,2 we say that A is universally consistent with

respect to H.

The notion of consistency is, of course, a relaxation of our previous notion

of nonuniform learnability. Clearly if an algorithm nonuniformly learns a class

H it is also universally consistent for that class. The relaxation is strict in the

sense that there are consistent learning rules that are not successful nonuniform

learners. For example, the algorithm Memorize defined in Example 7.4 later is

universally consistent for the class of all binary classifiers over N. However, as

we have argued before, this class is not nonuniformly learnable.

Example 7.4 Consider the classification prediction algorithm Memorize defined

as follows. The algorithm memorizes the training examples, and, given a test

point x, it predicts the majority label among all labeled instances of x that exist

in the training sample (and some fixed default label if no instance of x appears

in the training set). It is possible to show (see Exercise 6) that the Memorize

algorithm is universally consistent for every countable domain X and a finite

label set Y (w.r.t. the zero-one loss).

Intuitively, it is not obvious that the Memorize algorithm should be viewed as a

learner, since it lacks the aspect of generalization, namely, of using observed data

to predict the labels of unseen examples. The fact that Memorize is a consistent

algorithm for the class of all functions over any countable domain set therefore

raises doubt about the usefulness of consistency guarantees. Furthermore, the

sharp-eyed reader may notice that the “bad learner” we introduced in Chapter 2,

1 In the literature, consistency is often defined using the notion of either convergence in
probability (corresponding to weak consistency) or almost sure convergence (corresponding
to strong consistency).

2 Formally, we assume that Z is endowed with some sigma algebra of subsets Ω, and by “all

distributions” we mean all probability distributions that have Ω contained in their
associated family of measurable subsets.

7.5 Discussing the Different Notions of Learnability 93

which led to overfitting, is in fact the Memorize algorithm. In the next section

we discuss the significance of the different notions of learnability and revisit the

No-Free-Lunch theorem in light of the different definitions of learnability.

7.5 Discussing the Different Notions of Learnability

We have given three definitions of learnability and we now discuss their useful-

ness. As is usually the case, the usefulness of a mathematical definition depends

on what we need it for. We therefore list several possible goals that we aim to

achieve by defining learnability and discuss the usefulness of the different defini-

tions in light of these goals.

What Is the Risk of the Learned Hypothesis?
The first possible goal of deriving performance guarantees on a learning algo-

rithm is bounding the risk of the output predictor. Here, both PAC learning

and nonuniform learning give us an upper bound on the true risk of the learned

hypothesis based on its empirical risk. Consistency guarantees do not provide

such a bound. However, it is always possible to estimate the risk of the output

predictor using a validation set (as will be described in Chapter 11).

How Many Examples Are Required to Be as Good as the Best Hypothesis
in H?
When approaching a learning problem, a natural question is how many exam-

ples we need to collect in order to learn it. Here, PAC learning gives a crisp

answer. However, for both nonuniform learning and consistency, we do not know

in advance how many examples are required to learn H. In nonuniform learning

this number depends on the best hypothesis in H, and in consistency it also

depends on the underlying distribution. In this sense, PAC learning is the only

useful definition of learnability. On the flip side, one should keep in mind that

even if the estimation error of the predictor we learn is small, its risk may still

be large if H has a large approximation error. So, for the question “How many

examples are required to be as good as the Bayes optimal predictor?” even PAC

guarantees do not provide us with a crisp answer. This reflects the fact that the

usefulness of PAC learning relies on the quality of our prior knowledge.

PAC guarantees also help us to understand what we should do next if our

learning algorithm returns a hypothesis with a large risk, since we can bound

the part of the error that stems from estimation error and therefore know how

much of the error is attributed to approximation error. If the approximation error

is large, we know that we should use a different hypothesis class. Similarly, if a

nonuniform algorithm fails, we can consider a different weighting function over

(subsets of) hypotheses. However, when a consistent algorithm fails, we have

no idea whether this is because of the estimation error or the approximation

error. Furthermore, even if we are sure we have a problem with the estimation

94 Nonuniform Learnability

error term, we do not know how many more examples are needed to make the

estimation error small.

How to Learn? How to Express Prior Knowledge?
Maybe the most useful aspect of the theory of learning is in providing an answer

to the question of “how to learn.” The definition of PAC learning yields the

limitation of learning (via the No-Free-Lunch theorem) and the necessity of prior

knowledge. It gives us a crisp way to encode prior knowledge by choosing a

hypothesis class, and once this choice is made, we have a generic learning rule –

ERM. The definition of nonuniform learnability also yields a crisp way to encode

prior knowledge by specifying weights over (subsets of) hypotheses of H. Once

this choice is made, we again have a generic learning rule – SRM. The SRM rule

is also advantageous in model selection tasks, where prior knowledge is partial.

We elaborate on model selection in Chapter 11 and here we give a brief example.

Consider the problem of fitting a one dimensional polynomial to data; namely,

our goal is to learn a function, h : R → R, and as prior knowledge we consider

the hypothesis class of polynomials. However, we might be uncertain regarding

which degree d would give the best results for our data set: A small degree might

not fit the data well (i.e., it will have a large approximation error), whereas a

high degree might lead to overfitting (i.e., it will have a large estimation error).

In the following we depict the result of fitting a polynomial of degrees 2, 3, and

10 to the same training set.

degree 2 degree 3 degree 10

It is easy to see that the empirical risk decreases as we enlarge the degree.

Therefore, if we choose H to be the class of all polynomials up to degree 10 then

the ERM rule with respect to this class would output a 10 degree polynomial

and would overfit. On the other hand, if we choose too small a hypothesis class,

say, polynomials up to degree 2, then the ERM would suffer from underfitting

(i.e., a large approximation error). In contrast, we can use the SRM rule on the

set of all polynomials, while ordering subsets of H according to their degree, and

this will yield a 3rd degree polynomial since the combination of its empirical

risk and the bound on its estimation error is the smallest. In other words, the

SRM rule enables us to select the right model on the basis of the data itself. The

price we pay for this flexibility (besides a slight increase of the estimation error

relative to PAC learning w.r.t. the optimal degree) is that we do not know in

7.5 Discussing the Different Notions of Learnability 95

advance how many examples are needed to compete with the best hypothesis in

H.

Unlike the notions of PAC learnability and nonuniform learnability, the defini-

tion of consistency does not yield a natural learning paradigm or a way to encode

prior knowledge. In fact, in many cases there is no need for prior knowledge at

all. For example, we saw that even the Memorize algorithm, which intuitively

should not be called a learning algorithm, is a consistent algorithm for any class

defined over a countable domain and a finite label set. This hints that consistency

is a very weak requirement.

Which Learning Algorithm Should We Prefer?
One may argue that even though consistency is a weak requirement, it is desirable

that a learning algorithm will be consistent with respect to the set of all functions

from X to Y, which gives us a guarantee that for enough training examples, we

will always be as good as the Bayes optimal predictor. Therefore, if we have

two algorithms, where one is consistent and the other one is not consistent, we

should prefer the consistent algorithm. However, this argument is problematic for

two reasons. First, maybe it is the case that for most “natural” distributions we

will observe in practice that the sample complexity of the consistent algorithm

will be so large so that in every practical situation we will not obtain enough

examples to enjoy this guarantee. Second, it is not very hard to make any PAC

or nonuniform learner consistent with respect to the class of all functions from

X to Y. Concretely, consider a countable domain, X , a finite label set Y, and

a hypothesis class, H, of functions from X to Y. We can make any nonuniform

learner for H be consistent with respect to the class of all classifiers from X to Y
using the following simple trick: Upon receiving a training set, we will first run

the nonuniform learner over the training set, and then we will obtain a bound

on the true risk of the learned predictor. If this bound is small enough we are

done. Otherwise, we revert to the Memorize algorithm. This simple modification

makes the algorithm consistent with respect to all functions from X to Y. Since

it is easy to make any algorithm consistent, it may not be wise to prefer one

algorithm over the other just because of consistency considerations.

7.5.1 The No-Free-Lunch Theorem Revisited

Recall that the No-Free-Lunch theorem (Theorem 5.1 from Chapter 5) implies

that no algorithm can learn the class of all classifiers over an infinite domain.

In contrast, in this chapter we saw that the Memorize algorithm is consistent

with respect to the class of all classifiers over a countable infinite domain. To

understand why these two statements do not contradict each other, let us first

recall the formal statement of the No-Free-Lunch theorem.

Let X be a countable infinite domain and let Y = {±1}. The No-Free-Lunch

theorem implies the following: For any algorithm, A, and a training set size, m,

there exist a distribution over X and a function h? : X → Y, such that if A

96 Nonuniform Learnability

will get a sample of m i.i.d. training examples, labeled by h?, then A is likely to

return a classifier with a larger error.

The consistency of Memorize implies the following: For every distribution over

X and a labeling function h? : X → Y, there exists a training set size m (that

depends on the distribution and on h?) such that if Memorize receives at least

m examples it is likely to return a classifier with a small error.

We see that in the No-Free-Lunch theorem, we first fix the training set size,

and then find a distribution and a labeling function that are bad for this training

set size. In contrast, in consistency guarantees, we first fix the distribution and

the labeling function, and only then do we find a training set size that suffices

for learning this particular distribution and labeling function.

7.6 Summary

We introduced nonuniform learnability as a relaxation of PAC learnability and

consistency as a relaxation of nonuniform learnability. This means that even

classes of infinite VC-dimension can be learnable, in some weaker sense of learn-

ability. We discussed the usefulness of the different definitions of learnability.

For hypothesis classes that are countable, we can apply the Minimum Descrip-

tion Length scheme, where hypotheses with shorter descriptions are preferred,

following the principle of Occam’s razor. An interesting example is the hypothe-

sis class of all predictors we can implement in C++ (or any other programming

language), which we can learn (nonuniformly) using the MDL scheme.

Arguably, the class of all predictors we can implement in C++ is a powerful

class of functions and probably contains all that we can hope to learn in prac-

tice. The ability to learn this class is impressive, and, seemingly, this chapter

should have been the last chapter of this book. This is not the case, because of

the computational aspect of learning: that is, the runtime needed to apply the

learning rule. For example, to implement the MDL paradigm with respect to

all C++ programs, we need to perform an exhaustive search over all C++ pro-

grams, which will take forever. Even the implementation of the ERM paradigm

with respect to all C++ programs of description length at most 1000 bits re-

quires an exhaustive search over 21000 hypotheses. While the sample complexity

of learning this class is just 1000+log(2/δ)
ε2 , the runtime is ≥ 21000. This is a huge

number – much larger than the number of atoms in the visible universe. In the

next chapter we formally define the computational complexity of learning. In the

second part of this book we will study hypothesis classes for which the ERM or

SRM schemes can be implemented efficiently.

7.7 Bibliographic Remarks 97

7.7 Bibliographic Remarks

Our definition of nonuniform learnability is related to the definition of an Occam-

algorithm in Blumer, Ehrenfeucht, Haussler & Warmuth (1987). The concept of

SRM is due to (Vapnik & Chervonenkis 1974, Vapnik 1995). The concept of MDL

is due to (Rissanen 1978, Rissanen 1983). The relation between SRM and MDL

is discussed in Vapnik (1995). These notions are also closely related to the notion

of regularization (e.g. Tikhonov (1943)). We will elaborate on regularization in

the second part of this book.

The notion of consistency of estimators dates back to Fisher (1922). Our pre-

sentation of consistency follows Steinwart & Christmann (2008), who also derived

several no-free-lunch theorems.

7.8 Exercises

1. Prove that for any finite class H, and any description language d : H →
{0, 1}∗, the VC-dimension of H is at most 2 sup{|d(h)| : h ∈ H} – the maxi-

mum description length of a predictor in H. Furthermore, if d is a prefix-free

description then VCdim(H) ≤ sup{|d(h)| : h ∈ H}.
2. Let H = {hn : n ∈ N} be an infinite countable hypothesis class for binary

classification. Show that it is impossible to assign weights to the hypotheses

in H such that

• H could be learnt nonuniformly using these weights. That is, the weighting

function w : H → [0, 1] should satisfy the condition
∑
h∈H w(h) ≤ 1.

• The weights would be monotonically nondecreasing. That is, if i < j, then

w(hi) ≤ w(hj).

3. • Consider a hypothesis class H =
⋃∞
n=1Hn, where for every n ∈ N, Hn is

finite. Find a weighting function w : H → [0, 1] such that
∑
h∈H w(h) ≤

1 and so that for all h ∈ H, w(h) is determined by n(h) = min{n : h ∈
Hn} and by |Hn(h)|.

• (*) Define such a function w when for all n Hn is countable (possibly

infinite).

4. Let H be some hypothesis class. For any h ∈ H, let |h| denote the description

length of h, according to some fixed description language. Consider the MDL

learning paradigm in which the algorithm returns:

hS ∈ arg min
h∈H

[
LS(h) +

√
|h|+ ln(2/δ)

2m

]
,

where S is a sample of size m. For any B > 0, let HB = {h ∈ H : |h| ≤ B},
and define

h∗B = arg min
h∈HB

LD(h).

98 Nonuniform Learnability

Prove a bound on LD(hS)−LD(h∗B) in terms of B, the confidence parameter

δ, and the size of the training set m.

• Note: Such bounds are known as oracle inequalities in the literature: We

wish to estimate how good we are compared to a reference classifier (or

“oracle”) h∗B .

5. In this question we wish to show a No-Free-Lunch result for nonuniform learn-

ability: namely, that, over any infinite domain, the class of all functions is not

learnable even under the relaxed nonuniform variation of learning.

Recall that an algorithm, A, nonuniformly learns a hypothesis class H if

there exists a function mNUL

H : (0, 1)2×H → N such that, for every ε, δ ∈ (0, 1)

and for every h ∈ H, if m ≥ mNUL

H (ε, δ, h) then for every distribution D, with

probability of at least 1− δ over the choice of S ∼ Dm, it holds that

LD(A(S)) ≤ LD(h) + ε.

If such an algorithm exists then we say that H is nonuniformly learnable.

1. Let A be a nonuniform learner for a class H. For each n ∈ N define HAn =

{h ∈ H : mNUL(0.1, 0.1, h) ≤ n}. Prove that each such class Hn has a finite

VC-dimension.

2. Prove that if a class H is nonuniformly learnable then there are classes Hn
so that H =

⋃
n∈NHn and, for every n ∈ N, VCdim(Hn) is finite.

3. Let H be a class that shatters an infinite set. Then, for every sequence

of classes (Hn : n ∈ N) such that H =
⋃
n∈NHn, there exists some n for

which VCdim(Hn) =∞.

Hint: Given a class H that shatters some infinite set K, and a sequence of

classes (Hn : n ∈ N), each having a finite VC-dimension, start by defining

subsets Kn ⊆ K such that, for all n, |Kn| > VCdim(Hn) and for any

n 6= m, Kn ∩Km = ∅. Now, pick for each such Kn a function fn : Kn →
{0, 1} so that no h ∈ Hn agrees with fn on the domain Kn. Finally, define

f : X → {0, 1} by combining these fn’s and prove that f ∈
(
H \

⋃
n∈NHn

)
.

4. Construct a class H1 of functions from the unit interval [0, 1] to {0, 1} that

is nonuniformly learnable but not PAC learnable.

5. Construct a class H2 of functions from the unit interval [0, 1] to {0, 1} that

is not nonuniformly learnable.

6. In this question we wish to show that the algorithm Memorize is a consistent

learner for every class of (binary-valued) functions over any countable domain.

Let X be a countable domain and let D be a probability distribution over X .

1. Let {xi : i ∈ N} be an enumeration of the elements of X so that for all

i ≤ j, D({xi}) ≤ D({xj}). Prove that

lim
n→∞

∑
i≥n

D({xi}) = 0.

2. Given any ε > 0 prove that there exists εD > 0 such that

D({x ∈ X : D({x}) < εD}) < ε.

7.8 Exercises 99

3. Prove that for every η > 0, if n is such that D({xi}) < η for all i > n, then

for every m ∈ N,

P
S∼Dm

[∃xi : (D({xi}) > η and xi /∈ S)] ≤ ne−ηm.

4. Conclude that if X is countable then for every probability distribution D
over X there exists a function mD : (0, 1)× (0, 1)→ N such that for every

ε, δ > 0 if m > mD(ε, δ) then

P
S∼Dm

[D({x : x /∈ S}) > ε] < δ.

5. Prove that Memorize is a consistent learner for every class of (binary-

valued) functions over any countable domain.

8 The Runtime of Learning

So far in the book we have studied the statistical perspective of learning, namely,

how many samples are needed for learning. In other words, we focused on the

amount of information learning requires. However, when considering automated

learning, computational resources also play a major role in determining the com-

plexity of a task: that is, how much computation is involved in carrying out a

learning task. Once a sufficient training sample is available to the learner, there

is some computation to be done to extract a hypothesis or figure out the label of

a given test instance. These computational resources are crucial in any practical

application of machine learning. We refer to these two types of resources as the

sample complexity and the computational complexity. In this chapter, we turn

our attention to the computational complexity of learning.

The computational complexity of learning should be viewed in the wider con-

text of the computational complexity of general algorithmic tasks. This area has

been extensively investigated; see, for example, (Sipser 2006). The introductory

comments that follow summarize the basic ideas of that general theory that are

most relevant to our discussion.

The actual runtime (in seconds) of an algorithm depends on the specific ma-

chine the algorithm is being implemented on (e.g., what the clock rate of the

machine’s CPU is). To avoid dependence on the specific machine, it is common

to analyze the runtime of algorithms in an asymptotic sense. For example, we

say that the computational complexity of the merge-sort algorithm, which sorts

a list of n items, is O(n log(n)). This implies that we can implement the algo-

rithm on any machine that satisfies the requirements of some accepted abstract

model of computation, and the actual runtime in seconds will satisfy the follow-

ing: there exist constants c and n0, which can depend on the actual machine,

such that, for any value of n > n0, the runtime in seconds of sorting any n items

will be at most c n log(n). It is common to use the term feasible or efficiently

computable for tasks that can be performed by an algorithm whose running time

is O(p(n)) for some polynomial function p. One should note that this type of

analysis depends on defining what is the input size n of any instance to which

the algorithm is expected to be applied. For “purely algorithmic” tasks, as dis-

cussed in the common computational complexity literature, this input size is

clearly defined; the algorithm gets an input instance, say, a list to be sorted, or

an arithmetic operation to be calculated, which has a well defined size (say, the

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

8.1 Computational Complexity of Learning 101

number of bits in its representation). For machine learning tasks, the notion of

an input size is not so clear. An algorithm aims to detect some pattern in a data

set and can only access random samples of that data.

We start the chapter by discussing this issue and define the computational

complexity of learning. For advanced students, we also provide a detailed formal

definition. We then move on to consider the computational complexity of im-

plementing the ERM rule. We first give several examples of hypothesis classes

where the ERM rule can be efficiently implemented, and then consider some

cases where, although the class is indeed efficiently learnable, ERM implemen-

tation is computationally hard. It follows that hardness of implementing ERM

does not imply hardness of learning. Finally, we briefly discuss how one can show

hardness of a given learning task, namely, that no learning algorithm can solve

it efficiently.

8.1 Computational Complexity of Learning

Recall that a learning algorithm has access to a domain of examples, Z, a hy-

pothesis class, H, a loss function, `, and a training set of examples from Z that

are sampled i.i.d. according to an unknown distribution D. Given parameters

ε, δ, the algorithm should output a hypothesis h such that with probability of

at least 1− δ,
LD(h) ≤ min

h′∈H
LD(h′) + ε.

As mentioned before, the actual runtime of an algorithm in seconds depends on

the specific machine. To allow machine independent analysis, we use the standard

approach in computational complexity theory. First, we rely on a notion of an

abstract machine, such as a Turing machine (or a Turing machine over the reals

(Blum, Shub & Smale 1989)). Second, we analyze the runtime in an asymptotic

sense, while ignoring constant factors, thus the specific machine is not important

as long as it implements the abstract machine. Usually, the asymptote is with

respect to the size of the input to the algorithm. For example, for the merge-sort

algorithm mentioned before, we analyze the runtime as a function of the number

of items that need to be sorted.

In the context of learning algorithms, there is no clear notion of “input size.”

One might define the input size to be the size of the training set the algorithm

receives, but that would be rather pointless. If we give the algorithm a very

large number of examples, much larger than the sample complexity of the learn-

ing problem, the algorithm can simply ignore the extra examples. Therefore, a

larger training set does not make the learning problem more difficult, and, con-

sequently, the runtime available for a learning algorithm should not increase as

we increase the size of the training set. Just the same, we can still analyze the

runtime as a function of natural parameters of the problem such as the target

accuracy, the confidence of achieving that accuracy, the dimensionality of the

102 The Runtime of Learning

domain set, or some measures of the complexity of the hypothesis class with

which the algorithm’s output is compared.

To illustrate this, consider a learning algorithm for the task of learning axis

aligned rectangles. A specific problem of learning axis aligned rectangles is de-

rived by specifying ε, δ, and the dimension of the instance space. We can define a

sequence of problems of the type “rectangles learning” by fixing ε, δ and varying

the dimension to be d = 2, 3, 4, We can also define another sequence of “rect-

angles learning” problems by fixing d, δ and varying the target accuracy to be

ε = 1
2 ,

1
3 , One can of course choose other sequences of such problems. Once

a sequence of the problems is fixed, one can analyze the asymptotic runtime as

a function of variables of that sequence.

Before we introduce the formal definition, there is one more subtlety we need

to tackle. On the basis of the preceding, a learning algorithm can “cheat,” by

transferring the computational burden to the output hypothesis. For example,

the algorithm can simply define the output hypothesis to be the function that

stores the training set in its memory, and whenever it gets a test example x

it calculates the ERM hypothesis on the training set and applies it on x. Note

that in this case, our algorithm has a fixed output (namely, the function that

we have just described) and can run in constant time. However, learning is still

hard – the hardness is now in implementing the output classifier to obtain a

label prediction. To prevent this “cheating,” we shall require that the output of

a learning algorithm must be applied to predict the label of a new example in

time that does not exceed the runtime of training (that is, computing the output

classifier from the input training sample). In the next subsection the advanced

reader may find a formal definition of the computational complexity of learning.

8.1.1 Formal Definition*

The definition that follows relies on a notion of an underlying abstract machine,

which is usually either a Turing machine or a Turing machine over the reals. We

will measure the computational complexity of an algorithm using the number of

“operations” it needs to perform, where we assume that for any machine that

implements the underlying abstract machine there exists a constant c such that

any such “operation” can be performed on the machine using c seconds.

definition 8.1 (The Computational Complexity of a Learning Algorithm)

We define the complexity of learning in two steps. First we consider the compu-

tational complexity of a fixed learning problem (determined by a triplet (Z,H, `)
– a domain set, a benchmark hypothesis class, and a loss function). Then, in the

second step we consider the rate of change of that complexity along a sequence

of such tasks.

1. Given a function f : (0, 1)2 → N, a learning task (Z,H, `), and a learning

algorithm, A, we say that A solves the learning task in time O(f) if there

exists some constant number c, such that for every probability distribution D

8.2 Implementing the ERM Rule 103

over Z, and input ε, δ ∈ (0, 1), when A has access to samples generated i.i.d.

by D,

• A terminates after performing at most cf(ε, δ) operations

• The output of A, denoted hA, can be applied to predict the label of a new

example while performing at most cf(ε, δ) operations

• The output of A is probably approximately correct; namely, with proba-

bility of at least 1− δ (over the random samples A receives), LD(hA) ≤
minh′∈H LD(h′) + ε

2. Consider a sequence of learning problems, (Zn,Hn, `n)∞n=1, where problem n

is defined by a domain Zn, a hypothesis class Hn, and a loss function `n.

Let A be a learning algorithm designed for solving learning problems of

this form. Given a function g : N × (0, 1)2 → N, we say that the runtime of

A with respect to the preceding sequence is O(g), if for all n, A solves the

problem (Zn,Hn, `n) in time O(fn), where fn : (0, 1)2 → N is defined by

fn(ε, δ) = g(n, ε, δ).

We say that A is an efficient algorithm with respect to a sequence (Zn,Hn, `n)

if its runtime is O(p(n, 1/ε, 1/δ)) for some polynomial p.

From this definition we see that the question whether a general learning prob-

lem can be solved efficiently depends on how it can be broken into a sequence

of specific learning problems. For example, consider the problem of learning a

finite hypothesis class. As we showed in previous chapters, the ERM rule over

H is guaranteed to (ε, δ)-learn H if the number of training examples is order of

mH(ε, δ) = log(|H|/δ)/ε2. Assuming that the evaluation of a hypothesis on an

example takes a constant time, it is possible to implement the ERM rule in time

O(|H|mH(ε, δ)) by performing an exhaustive search over H with a training set

of size mH(ε, δ). For any fixed finite H, the exhaustive search algorithm runs

in polynomial time. Furthermore, if we define a sequence of problems in which

|Hn| = n, then the exhaustive search is still considered to be efficient. However, if

we define a sequence of problems for which |Hn| = 2n, then the sample complex-

ity is still polynomial in n but the computational complexity of the exhaustive

search algorithm grows exponentially with n (thus, rendered inefficient).

8.2 Implementing the ERM Rule

Given a hypothesis class H, the ERMH rule is maybe the most natural learning

paradigm. Furthermore, for binary classification problems we saw that if learning

is at all possible, it is possible with the ERM rule. In this section we discuss the

computational complexity of implementing the ERM rule for several hypothesis

classes.

Given a hypothesis class, H, a domain set Z, and a loss function `, the corre-

sponding ERMH rule can be defined as follows:

104 The Runtime of Learning

On a finite input sample S ∈ Zm output some h ∈ H that minimizes the empirical loss,
LS(h) = 1

|S|
∑
z∈S `(h, z).

This section studies the runtime of implementing the ERM rule for several

examples of learning tasks.

8.2.1 Finite Classes

Limiting the hypothesis class to be a finite class may be considered as a reason-

ably mild restriction. For example, H can be the set of all predictors that can be

implemented by a C++ program written in at most 10000 bits of code. Other ex-

amples of useful finite classes are any hypothesis class that can be parameterized

by a finite number of parameters, where we are satisfied with a representation

of each of the parameters using a finite number of bits, for example, the class of

axis aligned rectangles in the Euclidean space, Rd, when the parameters defining

any given rectangle are specified up to some limited precision.

As we have shown in previous chapters, the sample complexity of learning a

finite class is upper bounded by mH(ε, δ) = c log(c|H|/δ)/εc, where c = 1 in

the realizable case and c = 2 in the nonrealizable case. Therefore, the sample

complexity has a mild dependence on the size of H. In the example of C++

programs mentioned before, the number of hypotheses is 210,000 but the sample

complexity is only c(10, 000 + log(c/δ))/εc.

A straightforward approach for implementing the ERM rule over a finite hy-

pothesis class is to perform an exhaustive search. That is, for each h ∈ H we

calculate the empirical risk, LS(h), and return a hypothesis that minimizes

the empirical risk. Assuming that the evaluation of `(h, z) on a single exam-

ple takes a constant amount of time, k, the runtime of this exhaustive search

becomes k|H|m, where m is the size of the training set. If we let m to be the

upper bound on the sample complexity mentioned, then the runtime becomes

k|H|c log(c|H|/δ)/εc.
The linear dependence of the runtime on the size of H makes this approach

inefficient (and unrealistic) for large classes. Formally, if we define a sequence of

problems (Zn,Hn, `n)∞n=1 such that log(|Hn|) = n, then the exhaustive search

approach yields an exponential runtime. In the example of C++ programs, if Hn
is the set of functions that can be implemented by a C++ program written in

at most n bits of code, then the runtime grows exponentially with n, implying

that the exhaustive search approach is unrealistic for practical use. In fact, this

problem is one of the reasons we are dealing with other hypothesis classes, like

classes of linear predictors, which we will encounter in the next chapter, and not

just focusing on finite classes.

It is important to realize that the inefficiency of one algorithmic approach

(such as the exhaustive search) does not yet imply that no efficient ERM imple-

mentation exists. Indeed, we will show examples in which the ERM rule can be

implemented efficiently.

8.2 Implementing the ERM Rule 105

8.2.2 Axis Aligned Rectangles

Let Hn be the class of axis aligned rectangles in Rn, namely,

Hn = {h(a1,...,an,b1,...,bn) : ∀i, ai ≤ bi}

where

h(a1,...,an,b1,...,bn)(x, y) =

{
1 if ∀i, xi ∈ [ai, bi]

0 otherwise
(8.1)

Efficiently Learnable in the Realizable Case
Consider implementing the ERM rule in the realizable case. That is, we are given

a training set S = (x1, y1), . . . , (xm, ym) of examples, such that there exists an

axis aligned rectangle, h ∈ Hn, for which h(xi) = yi for all i. Our goal is to find

such an axis aligned rectangle with a zero training error, namely, a rectangle

that is consistent with all the labels in S.

We show later that this can be done in time O(nm). Indeed, for each i ∈ [n],

set ai = min{xi : (x, 1) ∈ S} and bi = max{xi : (x, 1) ∈ S}. In words, we take

ai to be the minimal value of the i’th coordinate of a positive example in S and

bi to be the maximal value of the i’th coordinate of a positive example in S.

It is easy to verify that the resulting rectangle has zero training error and that

the runtime of finding each ai and bi is O(m). Hence, the total runtime of this

procedure is O(nm).

Not Efficiently Learnable in the Agnostic Case
In the agnostic case, we do not assume that some hypothesis h perfectly predicts

the labels of all the examples in the training set. Our goal is therefore to find

h that minimizes the number of examples for which yi 6= h(xi). It turns out

that for many common hypothesis classes, including the classes of axis aligned

rectangles we consider here, solving the ERM problem in the agnostic setting is

NP-hard (and, in most cases, it is even NP-hard to find some h ∈ H whose error

is no more than some constant c > 1 times that of the empirical risk minimizer

in H). That is, unless P = NP, there is no algorithm whose running time is

polynomial in m and n that is guaranteed to find an ERM hypothesis for these

problems (Ben-David, Eiron & Long 2003).

On the other hand, it is worthwhile noticing that, if we fix one specific hypoth-

esis class, say, axis aligned rectangles in some fixed dimension, n, then there exist

efficient learning algorithms for this class. In other words, there are successful

agnostic PAC learners that run in time polynomial in 1/ε and 1/δ (but their

dependence on the dimension n is not polynomial).

To see this, recall the implementation of the ERM rule we presented for the

realizable case, from which it follows that an axis aligned rectangle is determined

by at most 2n examples. Therefore, given a training set of size m, we can per-

form an exhaustive search over all subsets of the training set of size at most 2n

examples and construct a rectangle from each such subset. Then, we can pick

106 The Runtime of Learning

the rectangle with the minimal training error. This procedure is guaranteed to

find an ERM hypothesis, and the runtime of the procedure is mO(n). It follows

that if n is fixed, the runtime is polynomial in the sample size. This does not

contradict the aforementioned hardness result, since there we argued that unless

P=NP one cannot have an algorithm whose dependence on the dimension n is

polynomial as well.

8.2.3 Boolean Conjunctions

A Boolean conjunction is a mapping from X = {0, 1}n to Y = {0, 1} that can be

expressed as a proposition formula of the form xi1 ∧ . . .∧xik ∧¬xj1 ∧ . . .∧¬xjr ,
for some indices i1, . . . , ik, j1, . . . , jr ∈ [n]. The function that such a proposition

formula defines is

h(x) =

{
1 if xi1 = · · · = xik = 1 and xj1 = · · · = xjr = 0

0 otherwise

Let HnC be the class of all Boolean conjunctions over {0, 1}n. The size of HnC is

at most 3n+ 1 (since in a conjunction formula, each element of x either appears,

or appears with a negation sign, or does not appear at all, and we also have the

all negative formula). Hence, the sample complexity of learning HnC using the

ERM rule is at most n log(3/δ)/ε.

Efficiently Learnable in the Realizable Case
Next, we show that it is possible to solve the ERM problem for HnC in time

polynomial in n and m. The idea is to define an ERM conjunction by including

in the hypothesis conjunction all the literals that do not contradict any positively

labeled example. Let v1, . . . ,vm+ be all the positively labeled instances in the

input sample S. We define, by induction on i ≤ m+, a sequence of hypotheses

(or conjunctions). Let h0 be the conjunction of all possible literals. That is,

h0 = x1 ∧ ¬x1 ∧ x2 ∧ . . . ∧ xn ∧ ¬xn. Note that h0 assigns the label 0 to all the

elements of X . We obtain hi+1 by deleting from the conjunction hi all the literals

that are not satisfied by vi+1. The algorithm outputs the hypothesis hm+ . Note

that hm+ labels positively all the positively labeled examples in S. Furthermore,

for every i ≤ m+, hi is the most restrictive conjunction that labels v1, . . . ,vi
positively. Now, since we consider learning in the realizable setup, there exists

a conjunction hypothesis, f ∈ HnC , that is consistent with all the examples in

S. Since hm+ is the most restrictive conjunction that labels positively all the

positively labeled members of S, any instance labeled 0 by f is also labeled 0 by

hm+ . It follows that hm+ has zero training error (w.r.t. S), and is therefore a

legal ERM hypothesis. Note that the running time of this algorithm is O(mn).

8.3 Efficiently Learnable, but Not by a Proper ERM 107

Not Efficiently Learnable in the Agnostic Case
As in the case of axis aligned rectangles, unless P = NP, there is no algorithm

whose running time is polynomial in m and n that guaranteed to find an ERM

hypothesis for the class of Boolean conjunctions in the unrealizable case.

8.2.4 Learning 3-Term DNF

We next show that a slight generalization of the class of Boolean conjunctions

leads to intractability of solving the ERM problem even in the realizable case.

Consider the class of 3-term disjunctive normal form formulae (3-term DNF).

The instance space is X = {0, 1}n and each hypothesis is represented by the

Boolean formula of the form h(x) = A1(x)∨A2(x)∨A3(x), where each Ai(x) is

a Boolean conjunction (as defined in the previous section). The output of h(x) is

1 if either A1(x) or A2(x) or A3(x) outputs the label 1. If all three conjunctions

output the label 0 then h(x) = 0.

Let Hn3DNF be the hypothesis class of all such 3-term DNF formulae. The size

of Hn3DNF is at most 33n. Hence, the sample complexity of learning Hn3DNF using

the ERM rule is at most 3n log(3/δ)/ε.

However, from the computational perspective, this learning problem is hard.

It has been shown (see (Pitt & Valiant 1988, Kearns et al. 1994)) that unless

RP = NP, there is no polynomial time algorithm that properly learns a sequence

of 3-term DNF learning problems in which the dimension of the n’th problem is

n. By “properly” we mean that the algorithm should output a hypothesis that is

a 3-term DNF formula. In particular, since ERMHn3DNF outputs a 3-term DNF

formula it is a proper learner and therefore it is hard to implement it. The proof

uses a reduction of the graph 3-coloring problem to the problem of PAC learning

3-term DNF. The detailed technique is given in Exercise 3. See also (Kearns &

Vazirani 1994, Section 1.4).

8.3 Efficiently Learnable, but Not by a Proper ERM

In the previous section we saw that it is impossible to implement the ERM rule

efficiently for the class Hn3DNF of 3-DNF formulae. In this section we show that it

is possible to learn this class efficiently, but using ERM with respect to a larger

class.

Representation Independent Learning Is Not Hard
Next we show that it is possible to learn 3-term DNF formulae efficiently. There

is no contradiction to the hardness result mentioned in the previous section as we

now allow “representation independent” learning. That is, we allow the learning

algorithm to output a hypothesis that is not a 3-term DNF formula. The ba-

sic idea is to replace the original hypothesis class of 3-term DNF formula with

a larger hypothesis class so that the new class is easily learnable. The learning

108 The Runtime of Learning

algorithm might return a hypothesis that does not belong to the original hypoth-

esis class; hence the name “representation independent” learning. We emphasize

that in most situations, returning a hypothesis with good predictive ability is

what we are really interested in doing.

We start by noting that because ∨ distributes over ∧, each 3-term DNF formula

can be rewritten as

A1 ∨A2 ∨A3 =
∧

u∈A1,v∈A2,w∈A3

(u ∨ v ∨ w)

Next, let us define: ψ : {0, 1}n → {0, 1}(2n)3 such that for each triplet of literals

u, v, w there is a variable in the range of ψ indicating if u∨ v∨w is true or false.

So, for each 3-DNF formula over {0, 1}n there is a conjunction over {0, 1}(2n)3 ,

with the same truth table. Since we assume that the data is realizable, we can

solve the ERM problem with respect to the class of conjunctions over {0, 1}(2n)3 .

Furthermore, the sample complexity of learning the class of conjunctions in the

higher dimensional space is at most n3 log(1/δ)/ε. Thus, the overall runtime of

this approach is polynomial in n.

Intuitively, the idea is as follows. We started with a hypothesis class for which

learning is hard. We switched to another representation where the hypothesis

class is larger than the original class but has more structure, which allows for a

more efficient ERM search. In the new representation, solving the ERM problem

is easy.

3-term-DNF formulae over {0, 1}n

conjunctions over {0, 1
}(2n

)
3

8.4 Hardness of Learning*

We have just demonstrated that the computational hardness of implementing

ERMH does not imply that such a class H is not learnable. How can we prove

that a learning problem is computationally hard?

One approach is to rely on cryptographic assumptions. In some sense, cryp-

tography is the opposite of learning. In learning we try to uncover some rule

underlying the examples we see, whereas in cryptography, the goal is to make

sure that nobody will be able to discover some secret, in spite of having access

8.4 Hardness of Learning* 109

to some partial information about it. On that high level intuitive sense, results

about the cryptographic security of some system translate into results about

the unlearnability of some corresponding task. Regrettably, currently one has no

way of proving that a cryptographic protocol is not breakable. Even the common

assumption of P 6= NP does not suffice for that (although it can be shown to

be necessary for most common cryptographic scenarios). The common approach

for proving that cryptographic protocols are secure is to start with some cryp-

tographic assumptions. The more these are used as a basis for cryptography, the

stronger is our belief that they really hold (or, at least, that algorithms that will

refute them are hard to come by).

We now briefly describe the basic idea of how to deduce hardness of learnabil-

ity from cryptographic assumptions. Many cryptographic systems rely on the

assumption that there exists a one way function. Roughly speaking, a one way

function is a function f : {0, 1}n → {0, 1}n (more formally, it is a sequence of

functions, one for each dimension n) that is easy to compute but is hard to in-

vert. More formally, f can be computed in time poly(n) but for any randomized

polynomial time algorithm A, and for every polynomial p(·),

P[f(A(f(x))) = f(x)] < 1
p(n) ,

where the probability is taken over a random choice of x according to the uniform

distribution over {0, 1}n and the randomness of A.

A one way function, f , is called trapdoor one way function if, for some poly-

nomial function p, for every n there exists a bit-string sn (called a secret key) of

length ≤ p(n), such that there is a polynomial time algorithm that, for every n

and every x ∈ {0, 1}n, on input (f(x), sn) outputs x. In other words, although

f is hard to invert, once one has access to its secret key, inverting f becomes

feasible. Such functions are parameterized by their secret key.

Now, let Fn be a family of trapdoor functions over {0, 1}n that can be calcu-

lated by some polynomial time algorithm. That is, we fix an algorithm that given

a secret key (representing one function in Fn) and an input vector, it calculates

the value of the function corresponding to the secret key on the input vector in

polynomial time. Consider the task of learning the class of the corresponding

inverses, Hn
F = {f−1 : f ∈ Fn}. Since each function in this class can be inverted

by some secret key sn of size polynomial in n, the class Hn
F can be parameter-

ized by these keys and its size is at most 2p(n). Its sample complexity is therefore

polynomial in n. We claim that there can be no efficient learner for this class. If

there were such a learner, L, then by sampling uniformly at random a polynomial

number of strings in {0, 1}n, and computing f over them, we could generate a

labeled training sample of pairs (f(x),x), which should suffice for our learner to

figure out an (ε, δ) approximation of f−1 (w.r.t. the uniform distribution over

the range of f), which would violate the one way property of f .

A more detailed treatment, as well as a concrete example, can be found in

(Kearns & Vazirani 1994, Chapter 6). Using reductions, they also show that

110 The Runtime of Learning

the class of functions that can be calculated by small Boolean circuits is not

efficiently learnable, even in the realizable case.

8.5 Summary

The runtime of learning algorithms is asymptotically analyzed as a function of

different parameters of the learning problem, such as the size of the hypothe-

sis class, our measure of accuracy, our measure of confidence, or the size of the

domain set. We have demonstrated cases in which the ERM rule can be imple-

mented efficiently. For example, we derived efficient algorithms for solving the

ERM problem for the class of Boolean conjunctions and the class of axis aligned

rectangles, under the realizability assumption. However, implementing ERM for

these classes in the agnostic case is NP-hard. Recall that from the statistical

perspective, there is no difference between the realizable and agnostic cases (i.e.,

a class is learnable in both cases if and only if it has a finite VC-dimension).

In contrast, as we saw, from the computational perspective the difference is im-

mense. We have also shown another example, the class of 3-term DNF, where

implementing ERM is hard even in the realizable case, yet the class is efficiently

learnable by another algorithm.

Hardness of implementing the ERM rule for several natural hypothesis classes

has motivated the development of alternative learning methods, which we will

discuss in the next part of this book.

8.6 Bibliographic Remarks

Valiant (1984) introduced the efficient PAC learning model in which the runtime

of the algorithm is required to be polynomial in 1/ε, 1/δ, and the representation

size of hypotheses in the class. A detailed discussion and thorough bibliographic

notes are given in Kearns & Vazirani (1994).

8.7 Exercises

1. Let H be the class of intervals on the line (formally equivalent to axis aligned

rectangles in dimension n = 1). Propose an implementation of the ERMH
learning rule (in the agnostic case) that given a training set of size m, runs

in time O(m2).

Hint: Use dynamic programming.

2. Let H1,H2, . . . be a sequence of hypothesis classes for binary classification.

Assume that there is a learning algorithm that implements the ERM rule in

the realizable case such that the output hypothesis of the algorithm for each

class Hn only depends on O(n) examples out of the training set. Furthermore,

8.7 Exercises 111

assume that such a hypothesis can be calculated given these O(n) examples

in time O(n), and that the empirical risk of each such hypothesis can be

evaluated in time O(mn). For example, if Hn is the class of axis aligned

rectangles in Rn, we saw that it is possible to find an ERM hypothesis in the

realizable case that is defined by at most 2n examples. Prove that in such

cases, it is possible to find an ERM hypothesis for Hn in the unrealizable case

in time O(mnmO(n)).

3. In this exercise, we present several classes for which finding an ERM classi-

fier is computationally hard. First, we introduce the class of n-dimensional

halfspaces, HSn, for a domain X = Rn. This is the class of all functions of

the form hw,b(x) = sign(〈w,x〉 + b) where w,x ∈ Rn, 〈w,x〉 is their inner

product, and b ∈ R. See a detailed description in Chapter 9.

1. Show that ERMH over the class H = HSn of linear predictors is compu-

tationally hard. More precisely, we consider the sequence of problems in

which the dimension n grows linearly and the number of examples m is set

to be some constant times n.

Hint: You can prove the hardness by a reduction from the following prob-

lem:
Max FS: Given a system of linear inequalities, Ax > b with A ∈ Rm×n and b ∈
Rm (that is, a system of m linear inequalities in n variables, x = (x1, . . . , xn)),
find a subsystem containing as many inequalities as possible that has a solution
(such a subsystem is called feasible).

It has been shown (Sankaran 1993) that the problem Max FS is NP-hard.

Show that any algorithm that finds an ERMHSn hypothesis for any training

sample S ∈ (Rn×{+1,−1})m can be used to solve the Max FS problem of

size m,n. Hint: Define a mapping that transforms linear inequalities in n

variables into labeled points in Rn, and a mapping that transforms vectors

in Rn to halfspaces, such that a vector w satisfies an inequality q if and

only if the labeled point that corresponds to q is classified correctly by the

halfspace corresponding to w. Conclude that the problem of empirical risk

minimization for halfspaces in also NP-hard (that is, if it can be solved in

time polynomial in the sample size, m, and the Euclidean dimension, n,

then every problem in the class NP can be solved in polynomial time).

2. Let X = Rn and let Hnk be the class of all intersections of k-many linear

halfspaces in Rn. In this exercise, we wish to show that ERMHnk is com-

putationally hard for every k ≥ 3. Precisely, we consider a sequence of

problems where k ≥ 3 is a constant and n grows linearly. The training set

size, m, also grows linearly with n.

Towards this goal, consider the k-coloring problem for graphs, defined as

follows:

Given a graph G = (V,E), and a number k, determine whether there exists a
function f : V → {1 . . . k} so that for every (u, v) ∈ E, f(u) 6= f(v).

The k-coloring problem is known to be NP-hard for every k ≥ 3 (Karp

1972).

112 The Runtime of Learning

We wish to reduce the k-coloring problem to ERMHnk : that is, to prove

that if there is an algorithm that solves the ERMHnk problem in time

polynomial in k, n, and the sample size m, then there is a polynomial time

algorithm for the graph k-coloring problem.

Given a graph G = (V,E), let {v1 . . . vn} be the vertices in V . Construct

a sample S(G) ∈ (Rn × {±1})m, where m = |V |+ |E|, as follows:

• For every vi ∈ V , construct an instance ei with a negative label.

• For every edge (vi, vj) ∈ E, construct an instance (ei + ej)/2 with a

positive label.

1. Prove that if there exists some h ∈ Hnk that has zero error over S(G)

then G is k-colorable.

Hint: Let h =
⋂k
j=1 hj be an ERM classifier in Hnk over S. Define a

coloring of V by setting f(vi) to be the minimal j such that hj(ei) = −1.

Use the fact that halfspaces are convex sets to show that it cannot be

true that two vertices that are connected by an edge have the same

color.

2. Prove that if G is k-colorable then there exists some h ∈ Hn
k that has

zero error over S(G).

Hint: Given a coloring f of the vertices of G, we should come up with k

hyperplanes, h1 . . . hk whose intersection is a perfect classifier for S(G).

Let b = 0.6 for all of these hyperplanes and, for t ≤ k let the i’th weight

of the t’th hyperplane, wt,i, be −1 if f(vi) = t and 0 otherwise.

3. Based on the above, prove that for any k ≥ 3, the ERMHnk problem is

NP-hard.

4. In this exercise we show that hardness of solving the ERM problem is equiv-

alent to hardness of proper PAC learning. Recall that by “properness” of the

algorithm we mean that it must output a hypothesis from the hypothesis

class. To formalize this statement, we first need the following definition.

definition 8.2 The complexity class Randomized Polynomial (RP) time

is the class of all decision problems (that is, problems in which on any instance

one has to find out whether the answer is YES or NO) for which there exists a

probabilistic algorithm (namely, the algorithm is allowed to flip random coins

while it is running) with these properties:

• On any input instance the algorithm runs in polynomial time in the input

size.

• If the correct answer is NO, the algorithm must return NO.

• If the correct answer is YES, the algorithm returns YES with probability

a ≥ 1/2 and returns NO with probability 1− a.1

Clearly the class RP contains the class P. It is also known that RP is

contained in the class NP. It is not known whether any equality holds among

these three complexity classes, but it is widely believed that NP is strictly

1 The constant 1/2 in the definition can be replaced by any constant in (0, 1).

8.7 Exercises 113

larger than RP. In particular, it is believed that NP-hard problems cannot be

solved by a randomized polynomial time algorithm.

• Show that if a class H is properly PAC learnable by a polynomial time

algorithm, then the ERMH problem is in the class RP. In particular, this

implies that whenever the ERMH problem is NP-hard (for example, the

class of intersections of halfspaces discussed in the previous exercise),

then, unless NP = RP, there exists no polynomial time proper PAC

learning algorithm for H.

Hint: Assume you have an algorithm A that properly PAC learns a

class H in time polynomial in some class parameter n as well as in 1/ε

and 1/δ. Your goal is to use that algorithm as a subroutine to contract

an algorithm B for solving the ERMH problem in random polynomial

time. Given a training set, S ∈ (X × {±1}m), and some h ∈ H whose

error on S is zero, apply the PAC learning algorithm to the uniform

distribution over S and run it so that with probability ≥ 0.3 it finds a

function h ∈ H that has error less than ε = 1/|S| (with respect to that

uniform distribution). Show that the algorithm just described satisfies

the requirements for being a RP solver for ERMH.

Part II

From Theory to Algorithms

9 Linear Predictors

In this chapter we will study the family of linear predictors, one of the most

useful families of hypothesis classes. Many learning algorithms that are being

widely used in practice rely on linear predictors, first and foremost because of

the ability to learn them efficiently in many cases. In addition, linear predictors

are intuitive, are easy to interpret, and fit the data reasonably well in many

natural learning problems.

We will introduce several hypothesis classes belonging to this family – halfspaces,

linear regression predictors, and logistic regression predictors – and present rele-

vant learning algorithms: linear programming and the Perceptron algorithm for

the class of halfspaces and the Least Squares algorithm for linear regression.

This chapter is focused on learning linear predictors using the ERM approach;

however, in later chapters we will see alternative paradigms for learning these

hypothesis classes.

First, we define the class of affine functions as

Ld = {hw,b : w ∈ Rd, b ∈ R},

where

hw,b(x) = 〈w,x〉+ b =

(
d∑
i=1

wixi

)
+ b.

It will be convenient also to use the notation

Ld = {x 7→ 〈w,x〉+ b : w ∈ Rd, b ∈ R},

which reads as follows: Ld is a set of functions, where each function is parame-

terized by w ∈ Rd and b ∈ R, and each such function takes as input a vector x

and returns as output the scalar 〈w,x〉+ b.

The different hypothesis classes of linear predictors are compositions of a func-

tion φ : R→ Y on Ld. For example, in binary classification, we can choose φ to

be the sign function, and for regression problems, where Y = R, φ is simply the

identity function.

It may be more convenient to incorporate b, called the bias, into w as an

extra coordinate and add an extra coordinate with a value of 1 to all x ∈ X ;

namely, let w′ = (b, w1, w2, . . . wd) ∈ Rd+1 and let x′ = (1, x1, x2, . . . , xd) ∈

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

118 Linear Predictors

Rd+1. Therefore,

hw,b(x) = 〈w,x〉+ b = 〈w′,x′〉.

It follows that each affine function in Rd can be rewritten as a homogenous linear

function in Rd+1 applied over the transformation that appends the constant 1

to each input vector. Therefore, whenever it simplifies the presentation, we will

omit the bias term and refer to Ld as the class of homogenous linear functions

of the form hw(x) = 〈w,x〉.
Throughout the book we often use the general term “linear functions” for both

affine functions and (homogenous) linear functions.

9.1 Halfspaces

The first hypothesis class we consider is the class of halfspaces, designed for

binary classification problems, namely, X = Rd and Y = {−1,+1}. The class of

halfspaces is defined as follows:

HSd = sign ◦ Ld = {x 7→ sign(hw,b(x)) : hw,b ∈ Ld}.

In other words, each halfspace hypothesis in HSd is parameterized by w ∈
Rd and b ∈ R and upon receiving a vector x the hypothesis returns the label

sign(〈w,x〉+ b).

To illustrate this hypothesis class geometrically, it is instructive to consider

the case d = 2. Each hypothesis forms a hyperplane that is perpendicular to the

vector w and intersects the vertical axis at the point (0,−b/w2). The instances

that are “above” the hyperplane, that is, share an acute angle with w, are labeled

positively. Instances that are “below” the hyperplane, that is, share an obtuse

angle with w, are labeled negatively.

w

−

+

−

+

In Section 9.1.3 we will show that VCdim(HSd) = d + 1. It follows that we

can learn halfspaces using the ERM paradigm, as long as the sample size is

Ω
(
d+log(1/δ)

ε

)
. Therefore, we now discuss how to implement an ERM procedure

for halfspaces.

We introduce below two solutions to finding an ERM halfspace in the realiz-

able case. In the context of halfspaces, the realizable case is often referred to as

the “separable” case, since it is possible to separate with a hyperplane all the

positive examples from all the negative examples. Implementing the ERM rule

9.1 Halfspaces 119

in the nonseparable case (i.e., the agnostic case) is known to be computationally

hard (Ben-David & Simon 2001). There are several approaches to learning non-

separable data. The most popular one is to use surrogate loss functions, namely,

to learn a halfspace that does not necessarily minimize the empirical risk with

the 0− 1 loss, but rather with respect to a diffferent loss function. For example,

in Section 9.3 we will describe the logistic regression approach, which can be

implemented efficiently even in the nonseparable case. We will study surrogate

loss functions in more detail later on in Chapter 12.

9.1.1 Linear Programming for the Class of Halfspaces

Linear programs (LP) are problems that can be expressed as maximizing a linear

function subject to linear inequalities. That is,

max
w∈Rd

〈u,w〉

subject to Aw ≥ v

where w ∈ Rd is the vector of variables we wish to determine, A is an m ×
d matrix, and v ∈ Rm,u ∈ Rd are vectors. Linear programs can be solved

efficiently,1 and furthermore, there are publicly available implementations of LP

solvers.

We will show that the ERM problem for halfspaces in the realizable case can

be expressed as a linear program. For simplicity, we assume the homogenous

case. Let S = {(xi, yi)}mi=1 be a training set of size m. Since we assume the

realizable case, an ERM predictor should have zero errors on the training set.

That is, we are looking for some vector w ∈ Rd for which

sign(〈w,xi〉) = yi, ∀i = 1, . . . ,m.

Equivalently, we are looking for some vector w for which

yi〈w,xi〉 > 0, ∀i = 1, . . . ,m.

Let w∗ be a vector that satisfies this condition (it must exist since we assume

realizability). Define γ = mini(yi〈w∗,xi〉) and let w̄ = w∗

γ . Therefore, for all i

we have

yi〈w̄, xi〉 =
1

γ
yi〈w∗,xi〉 ≥ 1.

We have thus shown that there exists a vector that satisfies

yi〈w,xi〉 ≥ 1, ∀i = 1, . . . ,m. (9.1)

And clearly, such a vector is an ERM predictor.

To find a vector that satisfies Equation (9.1) we can rely on an LP solver as

follows. Set A to be the m × d matrix whose rows are the instances multiplied

1 Namely, in time polynomial in m, d, and in the representation size of real numbers.

120 Linear Predictors

by yi. That is, Ai,j = yi xi,j , where xi,j is the j’th element of the vector xi. Let

v be the vector (1, . . . , 1) ∈ Rm. Then, Equation (9.1) can be rewritten as

Aw ≥ v.

The LP form requires a maximization objective, yet all the w that satisfy the

constraints are equal candidates as output hypotheses. Thus, we set a “dummy”

objective, u = (0, . . . , 0) ∈ Rd.

9.1.2 Perceptron for Halfspaces

A different implementation of the ERM rule is the Perceptron algorithm of

Rosenblatt (Rosenblatt 1958). The Perceptron is an iterative algorithm that

constructs a sequence of vectors w(1),w(2), Initially, w(1) is set to be the

all-zeros vector. At iteration t, the Perceptron finds an example i that is mis-

labeled by w(t), namely, an example for which sign(〈w(t),xi〉) 6= yi. Then, the

Perceptron updates w(t) by adding to it the instance xi scaled by the label yi.

That is, w(t+1) = w(t) + yixi. Recall that our goal is to have yi〈w,xi〉 > 0 for

all i and note that

yi〈w(t+1),xi〉 = yi〈w(t) + yixi,xi〉 = yi〈w(t),xi〉+ ‖xi‖2.

Hence, the update of the Perceptron guides the solution to be “more correct” on

the i’th example.

Batch Perceptron

input: A training set (x1, y1), . . . , (xm, ym)

initialize: w(1) = (0, . . . , 0)

for t = 1, 2, . . .

if (∃ i s.t. yi〈w(t),xi〉 ≤ 0) then

w(t+1) = w(t) + yixi
else

output w(t)

The following theorem guarantees that in the realizable case, the algorithm

stops with all sample points correctly classified.

theorem 9.1 Assume that (x1, y1), . . . , (xm, ym) is separable, let B = min{‖w‖ :

∀i ∈ [m], yi〈w,xi〉 ≥ 1}, and let R = maxi ‖xi‖. Then, the Perceptron al-

gorithm stops after at most (RB)2 iterations, and when it stops it holds that

∀i ∈ [m], yi〈w(t),xi〉 > 0.

Proof By the definition of the stopping condition, if the Perceptron stops it

must have separated all the examples. We will show that if the Perceptron runs

for T iterations, then we must have T ≤ (RB)2, which implies the Perceptron

must stop after at most (RB)2 iterations.

Let w? be a vector that achieves the minimum in the definition of B. That is,

9.1 Halfspaces 121

yi〈w?, xi〉 ≥ 1 for all i, and among all vectors that satisfy these constraints, w?

is of minimal norm.

The idea of the proof is to show that after performing T iterations, the cosine

of the angle between w? and w(T+1) is at least
√
T

RB . That is, we will show that

〈w?,w(T+1)〉
‖w?‖ ‖w(T+1)‖

≥
√
T

RB
. (9.2)

By the Cauchy-Schwartz inequality, the left-hand side of Equation (9.2) is at

most 1. Therefore, Equation (9.2) would imply that

1 ≥
√
T

RB
⇒ T ≤ (RB)2,

which will conclude our proof.

To show that Equation (9.2) holds, we first show that 〈w?,w(T+1)〉 ≥ T .

Indeed, at the first iteration, w(1) = (0, . . . , 0) and therefore 〈w?,w(1)〉 = 0,

while on iteration t, if we update using example (xi, yi) we have that

〈w?,w(t+1)〉 − 〈w?,w(t)〉 = 〈w?,w(t+1) −w(t)〉
= 〈w?, yixi〉 = yi〈w?,xi〉
≥ 1.

Therefore, after performing T iterations, we get:

〈w?,w(T+1)〉 =

T∑
t=1

(
〈w?,w(t+1)〉 − 〈w?,w(t)〉

)
≥ T, (9.3)

as required.

Next, we upper bound ‖w(T+1)‖. For each iteration t we have that

‖w(t+1)‖2 = ‖w(t) + yixi‖2

= ‖w(t)‖2 + 2yi〈w(t),xi〉+ y2
i ‖xi‖2

≤ ‖w(t)‖2 +R2 (9.4)

where the last inequality is due to the fact that example i is necessarily such

that yi〈w(t),xi〉 ≤ 0, and the norm of xi is at most R. Now, since ‖w(1)‖2 = 0,

if we use Equation (9.4) recursively for T iterations, we obtain that

‖w(T+1)‖2 ≤ TR2 ⇒ ‖w(T+1)‖ ≤
√
TR. (9.5)

Combining Equation (9.3) with Equation (9.5), and using the fact that ‖w?‖ =

B, we obtain that

〈w(T+1),w?〉
‖w?‖ ‖w(T+1)‖

≥ T

B
√
T R

=

√
T

B R
.

We have thus shown that Equation (9.2) holds, and this concludes our proof.

122 Linear Predictors

Remark 9.1 The Perceptron is simple to implement and is guaranteed to con-

verge. However, the convergence rate depends on the parameter B, which in

some situations might be exponentially large in d. In such cases, it would be

better to implement the ERM problem by solving a linear program, as described

in the previous section. Nevertheless, for many natural data sets, the size of B

is not too large, and the Perceptron converges quite fast.

9.1.3 The VC Dimension of Halfspaces

To compute the VC dimension of halfspaces, we start with the homogenous case.

theorem 9.2 The VC dimension of the class of homogenous halfspaces in Rd
is d.

Proof First, consider the set of vectors e1, . . . , ed, where for every i the vector

ei is the all zeros vector except 1 in the i’th coordinate. This set is shattered

by the class of homogenous halfspaces. Indeed, for every labeling y1, . . . , yd, set

w = (y1, . . . , yd), and then 〈w, ei〉 = yi for all i.

Next, let x1, . . . ,xd+1 be a set of d+ 1 vectors in Rd. Then, there must exist

real numbers a1, . . . , ad+1, not all of them are zero, such that
∑d+1
i=1 aixi = 0.

Let I = {i : ai > 0} and J = {j : aj < 0}. Either I or J is nonempty. Let us

first assume that both of them are nonempty. Then,∑
i∈I

aixi =
∑
j∈J
|aj |xj .

Now, suppose that x1, . . . ,xd+1 are shattered by the class of homogenous classes.

Then, there must exist a vector w such that 〈w,xi〉 > 0 for all i ∈ I while

〈w,xj〉 < 0 for every j ∈ J . It follows that

0 <
∑
i∈I

ai〈xi,w〉 =

〈∑
i∈I

aixi,w

〉
=

〈∑
j∈J
|aj |xj ,w

〉
=
∑
j∈J
|aj |〈xj ,w〉 < 0,

which leads to a contradiction. Finally, if J (respectively, I) is empty then the

right-most (respectively, left-most) inequality should be replaced by an equality,

which still leads to a contradiction.

theorem 9.3 The VC dimension of the class of nonhomogenous halfspaces in

Rd is d+ 1.

Proof First, as in the proof of Theorem 9.2, it is easy to verify that the set

of vectors 0, e1, . . . , ed is shattered by the class of nonhomogenous halfspaces.

Second, suppose that the vectors x1, . . . ,xd+2 are shattered by the class of non-

homogenous halfspaces. But, using the reduction we have shown in the beginning

of this chapter, it follows that there are d+ 2 vectors in Rd+1 that are shattered

by the class of homogenous halfspaces. But this contradicts Theorem 9.2.

9.2 Linear Regression 123

rr r rr r r r
r r

r

Figure 9.1 Linear regression for d = 1. For instance, the x-axis may denote the age of
the baby, and the y-axis her weight.

9.2 Linear Regression

Linear regression is a common statistical tool for modeling the relationship be-

tween some “explanatory” variables and some real valued outcome. Cast as a

learning problem, the domain set X is a subset of Rd, for some d, and the la-

bel set Y is the set of real numbers. We would like to learn a linear function

h : Rd → R that best approximates the relationship between our variables (say,

for example, predicting the weight of a baby as a function of her age and weight

at birth). Figure 9.1 shows an example of a linear regression predictor for d = 1.

The hypothesis class of linear regression predictors is simply the set of linear

functions,

Hreg = Ld = {x 7→ 〈w,x〉+ b : w ∈ Rd, b ∈ R}.

Next we need to define a loss function for regression. While in classification the

definition of the loss is straightforward, as `(h, (x, y)) simply indicates whether

h(x) correctly predicts y or not, in regression, if the baby’s weight is 3 kg, both

the predictions 3.00001 kg and 4 kg are “wrong,” but we would clearly prefer

the former over the latter. We therefore need to define how much we shall be

“penalized” for the discrepancy between h(x) and y. One common way is to use

the squared-loss function, namely,

`(h, (x, y)) = (h(x)− y)2.

For this loss function, the empirical risk function is called the Mean Squared

Error, namely,

LS(h) =
1

m

m∑
i=1

(h(xi)− yi)2.

124 Linear Predictors

In the next subsection, we will see how to implement the ERM rule for linear

regression with respect to the squared loss. Of course, there are a variety of other

loss functions that one can use, for example, the absolute value loss function,

`(h, (x, y)) = |h(x)− y|. The ERM rule for the absolute value loss function can

be implemented using linear programming (see Exercise 1.)

Note that since linear regression is not a binary prediction task, we cannot an-

alyze its sample complexity using the VC-dimension. One possible analysis of the

sample complexity of linear regression is by relying on the “discretization trick”

(see Remark 4.1 in Chapter 4); namely, if we are happy with a representation of

each element of the vector w and the bias b using a finite number of bits (say

a 64 bits floating point representation), then the hypothesis class becomes finite

and its size is at most 264(d+1). We can now rely on sample complexity bounds

for finite hypothesis classes as described in Chapter 4. Note, however, that to

apply the sample complexity bounds from Chapter 4 we also need that the loss

function will be bounded. Later in the book we will describe more rigorous means

to analyze the sample complexity of regression problems.

9.2.1 Least Squares

Least squares is the algorithm that solves the ERM problem for the hypoth-

esis class of linear regression predictors with respect to the squared loss. The

ERM problem with respect to this class, given a training set S, and using the

homogenous version of Ld, is to find

argmin
w

LS(hw) = argmin
w

1

m

m∑
i=1

(〈w,xi〉 − yi)2.

To solve the problem we calculate the gradient of the objective function and

compare it to zero. That is, we need to solve

2

m

m∑
i=1

(〈w,xi〉 − yi)xi = 0.

We can rewrite the problem as the problem Aw = b where

A =

(
m∑
i=1

xi x
>
i

)
and b =

m∑
i=1

yixi. (9.6)

9.2 Linear Regression 125

Or, in matrix form:

A =

...

...

x1 . . . xm
...

...

...
...

x1 . . . xm
...

...

>

, (9.7)

b =

...

...

x1 . . . xm
...

...

 y1

...

ym

 . (9.8)

If A is invertible then the solution to the ERM problem is

w = A−1 b.

The case in which A is not invertible requires a few standard tools from linear

algebra, which are available in Appendix C. It can be easily shown that if the

training instances do not span the entire space of Rd then A is not invertible.

Nevertheless, we can always find a solution to the system Aw = b because b

is in the range of A. Indeed, since A is symmetric we can write it using its

eigenvalue decomposition as A = V DV >, where D is a diagonal matrix and V

is an orthonormal matrix (that is, V >V is the identity d × d matrix). Define

D+ to be the diagonal matrix such that D+
i,i = 0 if Di,i = 0 and otherwise

D+
i,i = 1/Di,i. Now, define

A+ = V D+V > and ŵ = A+b.

Let vi denote the i’th column of V . Then, we have

Aŵ = AA+b = V DV >V D+V >b = V DD+V >b =
∑

i:Di,i 6=0

viv
>
i b.

That is, Aŵ is the projection of b onto the span of those vectors vi for which

Di,i 6= 0. Since the linear span of x1, . . . ,xm is the same as the linear span of

those vi, and b is in the linear span of the xi, we obtain that Aŵ = b, which

concludes our argument.

9.2.2 Linear Regression for Polynomial Regression Tasks

Some learning tasks call for nonlinear predictors, such as polynomial predictors.

Take, for instance, a one dimensional polynomial function of degree n, that is,

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

where (a0, . . . , an) is a vector of coefficients of size n + 1. In the following we

depict a training set that is better fitted using a 3rd degree polynomial predictor

than using a linear predictor.

126 Linear Predictors

We will focus here on the class of one dimensional, n-degree, polynomial re-

gression predictors, namely,

Hnpoly = {x 7→ p(x)},

where p is a one dimensional polynomial of degree n, parameterized by a vector

of coefficients (a0, . . . , an). Note that X = R, since this is a one dimensional

polynomial, and Y = R, as this is a regression problem.

One way to learn this class is by reduction to the problem of linear regression,

which we have already shown how to solve. To translate a polynomial regression

problem to a linear regression problem, we define the mapping ψ : R → Rn+1

such that ψ(x) = (1, x, x2, . . . , xn). Then we have that

p(ψ(x)) = a0 + a1x+ a2x
2 + · · ·+ anx

n = 〈a, ψ(x)〉

and we can find the optimal vector of coefficients a by using the Least Squares

algorithm as shown earlier.

9.3 Logistic Regression

In logistic regression we learn a family of functions h from Rd to the interval [0, 1].

However, logistic regression is used for classification tasks: We can interpret h(x)

as the probability that the label of x is 1. The hypothesis class associated with

logistic regression is the composition of a sigmoid function φsig : R→ [0, 1] over

the class of linear functions Ld. In particular, the sigmoid function used in logistic

regression is the logistic function, defined as

φsig(z) =
1

1 + exp(−z)
. (9.9)

The name “sigmoid” means “S-shaped,” referring to the plot of this function,

shown in the figure:

9.3 Logistic Regression 127

The hypothesis class is therefore (where for simplicity we are using homogenous

linear functions):

Hsig = φsig ◦ Ld = {x 7→ φsig(〈w,x〉) : w ∈ Rd}.

Note that when 〈w,x〉 is very large then φsig(〈w,x〉) is close to 1, whereas if

〈w,x〉 is very small then φsig(〈w,x〉) is close to 0. Recall that the prediction of the

halfspace corresponding to a vector w is sign(〈w,x〉). Therefore, the predictions

of the halfspace hypothesis and the logistic hypothesis are very similar whenever

|〈w,x〉| is large. However, when |〈w,x〉| is close to 0 we have that φsig(〈w,x〉) ≈
1
2 . Intuitively, the logistic hypothesis is not sure about the value of the label so it

guesses that the label is sign(〈w,x〉) with probability slightly larger than 50%.

In contrast, the halfspace hypothesis always outputs a deterministic prediction

of either 1 or −1, even if |〈w,x〉| is very close to 0.

Next, we need to specify a loss function. That is, we should define how bad it

is to predict some hw(x) ∈ [0, 1] given that the true label is y ∈ {±1}. Clearly,

we would like that hw(x) would be large if y = 1 and that 1 − hw(x) (i.e., the

probability of predicting −1) would be large if y = −1. Note that

1− hw(x) = 1− 1

1 + exp(−〈w,x〉)
=

exp(−〈w,x〉)
1 + exp(−〈w,x〉)

=
1

1 + exp(〈w,x〉)
.

Therefore, any reasonable loss function would increase monotonically with 1
1+exp(y〈w,x〉) ,

or equivalently, would increase monotonically with 1 + exp(−y〈w,x〉). The lo-

gistic loss function used in logistic regression penalizes hw based on the log of

1 + exp(−y〈w,x〉) (recall that log is a monotonic function). That is,

`(hw, (x, y)) = log (1 + exp(−y〈w,x〉)) .

Therefore, given a training set S = (x1, y1), . . . , (xm, ym), the ERM problem

associated with logistic regression is

argmin
w∈Rd

1

m

m∑
i=1

log (1 + exp(−yi〈w,xi〉)) . (9.10)

The advantage of the logistic loss function is that it is a convex function with

respect to w; hence the ERM problem can be solved efficiently using standard

methods. We will study how to learn with convex functions, and in particular

specify a simple algorithm for minimizing convex functions, in later chapters.

The ERM problem associated with logistic regression (Equation (9.10)) is iden-

tical to the problem of finding a Maximum Likelihood Estimator, a well-known

statistical approach for finding the parameters that maximize the joint probabil-

ity of a given data set assuming a specific parametric probability function. We

will study the Maximum Likelihood approach in Chapter 24.

128 Linear Predictors

9.4 Summary

The family of linear predictors is one of the most useful families of hypothesis

classes, and many learning algorithms that are being widely used in practice

rely on linear predictors. We have shown efficient algorithms for learning linear

predictors with respect to the zero-one loss in the separable case and with respect

to the squared and logistic losses in the unrealizable case. In later chapters we

will present the properties of the loss function that enable efficient learning.

Naturally, linear predictors are effective whenever we assume, as prior knowl-

edge, that some linear predictor attains low risk with respect to the underlying

distribution. In the next chapter we show how to construct nonlinear predictors

by composing linear predictors on top of simple classes. This will enable us to

employ linear predictors for a variety of prior knowledge assumptions.

9.5 Bibliographic Remarks

The Perceptron algorithm dates back to Rosenblatt (1958). The proof of its

convergence rate is due to (Agmon 1954, Novikoff 1962). Least Squares regression

goes back to Gauss (1795), Legendre (1805), and Adrain (1808).

9.6 Exercises

1. Show how to cast the ERM problem of linear regression with respect to the

absolute value loss function, `(h, (x, y)) = |h(x) − y|, as a linear program;

namely, show how to write the problem

min
w

m∑
i=1

|〈w,xi〉 − yi|

as a linear program.

Hint: Start with proving that for any c ∈ R,

|c| = min
a≥0

a s.t. c ≤ a and c ≥ −a.

2. Show that the matrix A defined in Equation (9.6) is invertible if and only if

x1, . . . ,xm span Rd.
3. Show that Theorem 9.1 is tight in the following sense: For any positive integer

m, there exist a vector w∗ ∈ Rd (for some appropriate d) and a sequence of

examples {(x1, y1), . . . , (xm, ym)} such that the following hold:

• R = maxi ‖xi‖ ≤ 1.

• ‖w∗‖2 = m, and for all i ≤ m, yi〈xi,w∗〉 ≥ 1. Note that, using the notation

in Theorem 9.1, we therefore get

B = min{‖w‖ : ∀i ∈ [m], yi〈w, xi〉 ≥ 1} ≤
√
m.

9.6 Exercises 129

Thus, (BR)2 ≤ m.

• When running the Perceptron on this sequence of examples it makes m

updates before converging.

Hint: Choose d = m and for every i choose xi = ei.

4. (*) Given any number m, find an example of a sequence of labeled examples

((x1, y1), . . . , (xm, ym)) ∈ (R3 × {−1,+1})m on which the upper bound of

Theorem 9.1 equals m and the perceptron algorithm is bound to make m

mistakes.

Hint: Set each xi to be a third dimensional vector of the form (a, b, yi), where

a2 + b2 = R2 − 1. Let w∗ be the vector (0, 0, 1). Now, go over the proof of

the Perceptron’s upper bound (Theorem 9.1), see where we used inequalities

(≤) rather than equalities (=), and figure out scenarios where the inequality

actually holds with equality.

5. Suppose we modify the Perceptron algorithm as follows: In the update step,

instead of performing w(t+1) = w(t) + yixi whenever we make a mistake, we

perform w(t+1) = w(t) + ηyixi for some η > 0. Prove that the modified Per-

ceptron will perform the same number of iterations as the vanilla Perceptron

and will converge to a vector that points to the same direction as the output

of the vanilla Perceptron.

6. In this problem, we will get bounds on the VC-dimension of the class of

(closed) balls in Rd, that is,

Bd = {Bv,r : v ∈ Rd, r > 0},

where

Bv,r(x) =

{
1 if ‖x− v‖ ≤ r
0 otherwise

.

1. Consider the mapping φ : Rd → Rd+1 defined by φ(x) = (x, ‖x‖2). Show

that if x1, . . . ,xm are shattered by Bd then φ(x1), . . . , φ(xm) are shattered

by the class of halfspaces in Rd+1 (in this question we assume that sign(0) =

1). What does this tell us about VCdim(Bd)?
2. (*) Find a set of d+ 1 points in Rd that is shattered by Bd. Conclude that

d+ 1 ≤ VCdim(Bd) ≤ d+ 2.

10 Boosting

Boosting is an algorithmic paradigm that grew out of a theoretical question and

became a very practical machine learning tool. The boosting approach uses a

generalization of linear predictors to address two major issues that have been

raised earlier in the book. The first is the bias-complexity tradeoff. We have

seen (in Chapter 5) that the error of an ERM learner can be decomposed into

a sum of approximation error and estimation error. The more expressive the

hypothesis class the learner is searching over, the smaller the approximation

error is, but the larger the estimation error becomes. A learner is thus faced with

the problem of picking a good tradeoff between these two considerations. The

boosting paradigm allows the learner to have smooth control over this tradeoff.

The learning starts with a basic class (that might have a large approximation

error), and as it progresses the class that the predictor may belong to grows

richer.

The second issue that boosting addresses is the computational complexity of

learning. As seen in Chapter 8, for many interesting concept classes the task

of finding an ERM hypothesis may be computationally infeasible. A boosting

algorithm amplifies the accuracy of weak learners. Intuitively, one can think of

a weak learner as an algorithm that uses a simple “rule of thumb” to output a

hypothesis that comes from an easy-to-learn hypothesis class and performs just

slightly better than a random guess. When a weak learner can be implemented

efficiently, boosting provides a tool for aggregating such weak hypotheses to

approximate gradually good predictors for larger, and harder to learn, classes.

In this chapter we will describe and analyze a practically useful boosting algo-

rithm, AdaBoost (a shorthand for Adaptive Boosting). The AdaBoost algorithm

outputs a hypothesis that is a linear combination of simple hypotheses. In other

words, AdaBoost relies on the family of hypothesis classes obtained by composing

a linear predictor on top of simple classes. We will show that AdaBoost enables

us to control the tradeoff between the approximation and estimation errors by

varying a single parameter.

AdaBoost demonstrates a general theme, that will recur later in the book, of

expanding the expressiveness of linear predictors by composing them on top of

other functions. This will be elaborated in Section 10.3.

AdaBoost stemmed from the theoretical question of whether an efficient weak

learner can be “boosted” into an efficient strong learner. This question was raised

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

10.1 Weak Learnability 131

by Kearns and Valiant in 1988 and solved in 1990 by Robert Schapire, then

a graduate student at MIT. However, the proposed mechanism was not very

practical. In 1995, Robert Schapire and Yoav Freund proposed the AdaBoost

algorithm, which was the first truly practical implementation of boosting. This

simple and elegant algorithm became hugely popular, and Freund and Schapire’s

work has been recognized by numerous awards.

Furthermore, boosting is a great example for the practical impact of learning

theory. While boosting originated as a purely theoretical problem, it has led to

popular and widely used algorithms. Indeed, as we shall demonstrate later in

this chapter, AdaBoost has been successfully used for learning to detect faces in

images.

10.1 Weak Learnability

Recall the definition of PAC learning given in Chapter 3: A hypothesis class,

H, is PAC learnable if there exist mH : (0, 1)2 → N and a learning algorithm

with the following property: For every ε, δ ∈ (0, 1), for every distribution D over

X , and for every labeling function f : X → {±1}, if the realizable assumption

holds with respect to H,D, f , then when running the learning algorithm on

m ≥ mH(ε, δ) i.i.d. examples generated by D and labeled by f , the algorithm

returns a hypothesis h such that, with probability of at least 1−δ, L(D,f)(h) ≤ ε.
Furthermore, the fundamental theorem of learning theory (Theorem 6.8 in

Chapter 6) characterizes the family of learnable classes and states that every PAC

learnable class can be learned using any ERM algorithm. However, the definition

of PAC learning and the fundamental theorem of learning theory ignores the

computational aspect of learning. Indeed, as we have shown in Chapter 8, there

are cases in which implementing the ERM rule is computationally hard (even in

the realizable case).

However, perhaps we can trade computational hardness with the requirement

for accuracy. Given a distributionD and a target labeling function f , maybe there

exists an efficiently computable learning algorithm whose error is just slightly

better than a random guess? This motivates the following definition.

definition 10.1 (γ-Weak-Learnability)

• A learning algorithm, A, is a γ-weak-learner for a classH if there exists a func-

tion mH : (0, 1) → N such that for every δ ∈ (0, 1), for every distribution

D over X , and for every labeling function f : X → {±1}, if the realizable

assumption holds with respect to H,D, f , then when running the learning

algorithm on m ≥ mH(δ) i.i.d. examples generated by D and labeled by f ,

the algorithm returns a hypothesis h such that, with probability of at least

1− δ, L(D,f)(h) ≤ 1/2− γ.

• A hypothesis class H is γ-weak-learnable if there exists a γ-weak-learner for

that class.

132 Boosting

This definition is almost identical to the definition of PAC learning, which

here we will call strong learning, with one crucial difference: Strong learnability

implies the ability to find an arbitrarily good classifier (with error rate at most

ε for an arbitrarily small ε > 0). In weak learnability, however, we only need to

output a hypothesis whose error rate is at most 1/2 − γ, namely, whose error

rate is slightly better than what a random labeling would give us. The hope is

that it may be easier to come up with efficient weak learners than with efficient

(full) PAC learners.

The fundamental theorem of learning (Theorem 6.8) states that if a hypothesis

class H has a VC dimension d, then the sample complexity of PAC learning H
satisfies mH(ε, δ) ≥ C1

d+log(1/δ)
ε , where C1 is a constant. Applying this with

ε = 1/2−γ we immediately obtain that if d =∞ then H is not γ-weak-learnable.

This implies that from the statistical perspective (i.e., if we ignore computational

complexity), weak learnability is also characterized by the VC dimension of H
and therefore is just as hard as PAC (strong) learning. However, when we do

consider computational complexity, the potential advantage of weak learning is

that maybe there is an algorithm that satisfies the requirements of weak learning

and can be implemented efficiently.

One possible approach is to take a “simple” hypothesis class, denoted B, and

to apply ERM with respect to B as the weak learning algorithm. For this to

work, we need that B will satisfy two requirements:

• ERMB is efficiently implementable.

• For every sample that is labeled by some hypothesis from H, any ERMB

hypothesis will have an error of at most 1/2− γ.

Then, the immediate question is whether we can boost an efficient weak learner

into an efficient strong learner. In the next section we will show that this is

indeed possible, but before that, let us show an example in which efficient weak

learnability of a class H is possible using a base hypothesis class B.

Example 10.1 (Weak Learning of 3-Piece Classifiers Using Decision Stumps)

Let X = R and let H be the class of 3-piece classifiers, namely, H = {hθ1,θ2,b :

θ1, θ2 ∈ R, θ1 < θ2, b ∈ {±1}}, where for every x,

hθ1,θ2,b(x) =

{
+b if x < θ1 or x > θ2

−b if θ1 ≤ x ≤ θ2

An example hypothesis (for b = 1) is illustrated as follows:

θ1 θ2

+ +−

Let B be the class of Decision Stumps, that is, B = {x 7→ sign(x− θ) · b : θ ∈
R, b ∈ {±1}}. In the following we show that ERMB is a γ-weak learner for H,

for γ = 1/12.

10.1 Weak Learnability 133

To see that, we first show that for every distribution that is consistent with

H, there exists a decision stump with LD(h) ≤ 1/3. Indeed, just note that

every classifier in H consists of three regions (two unbounded rays and a center

interval) with alternate labels. For any pair of such regions, there exists a decision

stump that agrees with the labeling of these two components. Note that for every

distribution D over R and every partitioning of the line into three such regions,

one of these regions must have D-weight of at most 1/3. Let h ∈ H be a zero

error hypothesis. A decision stump that disagrees with h only on such a region

has an error of at most 1/3.

Finally, since the VC-dimension of decision stumps is 2, if the sample size is

greater than Ω(log(1/δ)/ε2), then with probability of at least 1− δ, the ERMB

rule returns a hypothesis with an error of at most 1/3 + ε. Setting ε = 1/12 we

obtain that the error of ERMB is at most 1/3 + 1/12 = 1/2− 1/12.

We see that ERMB is a γ-weak learner for H. We next show how to implement

the ERM rule efficiently for decision stumps.

10.1.1 Efficient Implementation of ERM for Decision Stumps

Let X = Rd and consider the base hypothesis class of decision stumps over Rd,
namely,

HDS = {x 7→ sign(θ − xi) · b : θ ∈ R, i ∈ [d], b ∈ {±1}}.

For simplicity, assume that b = 1; that is, we focus on all the hypotheses in

HDS of the form sign(θ − xi). Let S = ((x1, y1), . . . , (xm, ym)) be a training set.

We will show how to implement an ERM rule, namely, how to find a decision

stump that minimizes LS(h). Furthermore, since in the next section we will

show that AdaBoost requires finding a hypothesis with a small risk relative to

some distribution over S, we will show here how to minimize such risk functions.

Concretely, let D be a probability vector in Rm (that is, all elements of D are

nonnegative and
∑
iDi = 1). The weak learner we describe later receives D and

S and outputs a decision stump h : X → Y that minimizes the risk w.r.t. D,

LD(h) =

m∑
i=1

Di1[h(xi)6=yi].

Note that if D = (1/m, . . . , 1/m) then LD(h) = LS(h).

Recall that each decision stump is parameterized by an index j ∈ [d] and a

threshold θ. Therefore, minimizing LD(h) amounts to solving the problem

min
j∈[d]

min
θ∈R

 ∑
i:yi=1

Di1[xi,j>θ] +
∑

i:yi=−1

Di1[xi,j≤θ]

 . (10.1)

Fix j ∈ [d] and let us sort the examples so that x1,j ≤ x2,j ≤ . . . ≤ xm,j . Define

Θj = {xi,j+xi+1,j

2 : i ∈ [m−1]}∪{(x1,j −1), (xm,j + 1)}. Note that for any θ ∈ R
there exists θ′ ∈ Θj that yields the same predictions for the sample S as the

134 Boosting

threshold θ. Therefore, instead of minimizing over θ ∈ R we can minimize over

θ ∈ Θj .

This already gives us an efficient procedure: Choose j ∈ [d] and θ ∈ Θj that

minimize the objective value of Equation (10.1). For every j and θ ∈ Θj we

have to calculate a sum over m examples; therefore the runtime of this approach

would be O(dm2). We next show a simple trick that enables us to minimize the

objective in time O(dm).

The observation is as follows. Suppose we have calculated the objective for

θ ∈ (xi−1,j , xi,j). Let F (θ) be the value of the objective. Then, when we consider

θ′ ∈ (xi,j , xi+1,j) we have that

F (θ′) = F (θ)−Di1[yi=1] +Di1[yi=−1] = F (θ)− yiDi.

Therefore, we can calculate the objective at θ′ in a constant time, given the

objective at the previous threshold, θ. It follows that after a preprocessing step

in which we sort the examples with respect to each coordinate, the minimization

problem can be performed in time O(dm). This yields the following pseudocode.

ERM for Decision Stumps

input:

training set S = (x1, y1), . . . , (xm, ym)

distribution vector D

goal: Find j?, θ? that solve Equation (10.1)

initialize: F ? =∞
for j = 1, . . . , d

sort S using the j’th coordinate, and denote

x1,j ≤ x2,j ≤ · · · ≤ xm,j ≤ xm+1,j
def
= xm,j + 1

F =
∑
i:yi=1Di

if F < F ?

F ? = F , θ? = x1,j − 1, j? = j

for i = 1, . . . ,m

F = F − yiDi

if F < F ? and xi,j 6= xi+1,j

F ? = F , θ? = 1
2 (xi,j + xi+1,j), j

? = j

output j?, θ?

10.2 AdaBoost

AdaBoost (short for Adaptive Boosting) is an algorithm that has access to a

weak learner and finds a hypothesis with a low empirical risk. The AdaBoost

algorithm receives as input a training set of examples S = (x1, y1), . . . , (xm, ym),

where for each i, yi = f(xi) for some labeling function f . The boosting process

proceeds in a sequence of consecutive rounds. At round t, the booster first defines

10.2 AdaBoost 135

a distribution over the examples in S, denoted D(t). That is, D(t) ∈ Rm+ and∑m
i=1D

(t)
i = 1. Then, the booster passes the distribution D(t) and the sample S

to the weak learner. (That way, the weak learner can construct i.i.d. examples

according to D(t) and f .) The weak learner is assumed to return a “weak”

hypothesis, ht, whose error,

εt
def
= LD(t)(ht)

def
=

m∑
i=1

D
(t)
i 1[ht(xi)6=yi],

is at most 1
2−γ (of course, there is a probability of at most δ that the weak learner

fails). Then, AdaBoost assigns a weight for ht as follows: wt = 1
2 log

(
1
εt
− 1
)

.

That is, the weight of ht is inversely proportional to the error of ht. At the end

of the round, AdaBoost updates the distribution so that examples on which ht
errs will get a higher probability mass while examples on which ht is correct will

get a lower probability mass. Intuitively, this will force the weak learner to focus

on the problematic examples in the next round. The output of the AdaBoost

algorithm is a “strong” classifier that is based on a weighted sum of all the weak

hypotheses. The pseudocode of AdaBoost is presented in the following.

AdaBoost

input:

training set S = (x1, y1), . . . , (xm, ym)

weak learner WL

number of rounds T

initialize D(1) = (1
m , . . . ,

1
m).

for t = 1, . . . , T :

invoke weak learner ht = WL(D(t), S)

compute εt =
∑m
i=1D

(t)
i 1[yi 6=ht(xi)]

let wt = 1
2 log

(
1
εt
− 1
)

update D
(t+1)
i =

D
(t)
i exp(−wtyiht(xi))∑m

j=1D
(t)
j exp(−wtyjht(xj))

for all i = 1, . . . ,m

output the hypothesis hs(x) = sign
(∑T

t=1 wtht(x)
)

.

The following theorem shows that the training error of the output hypothesis

decreases exponentially fast with the number of boosting rounds.

theorem 10.2 Let S be a training set and assume that at each iteration of

AdaBoost, the weak learner returns a hypothesis for which εt ≤ 1/2 − γ. Then,

the training error of the output hypothesis of AdaBoost is at most

LS(hs) =
1

m

m∑
i=1

1[hs(xi)6=yi] ≤ exp(−2 γ2 T) .

Proof For each t, denote ft =
∑
p≤t wphp. Therefore, the output of AdaBoost

136 Boosting

is fT . In addition, denote

Zt =
1

m

m∑
i=1

e−yift(xi).

Note that for any hypothesis we have that 1[h(x)6=y] ≤ e−yh(x). Therefore, LS(fT) ≤
ZT , so it suffices to show that ZT ≤ e−2γ2T . To upper bound ZT we rewrite it

as

ZT =
ZT
Z0

=
ZT
ZT−1

· ZT−1

ZT−2
· · · Z2

Z1
· Z1

Z0
, (10.2)

where we used the fact that Z0 = 1 because f0 ≡ 0. Therefore, it suffices to show

that for every round t,

Zt+1

Zt
≤ e−2γ2

. (10.3)

To do so, we first note that using a simple inductive argument, for all t and i,

D
(t+1)
i =

e−yift(xi)∑m
j=1 e

−yjft(xj)
.

Hence,

Zt+1

Zt
=

∑m
i=1 e

−yift+1(xi)

m∑
j=1

e−yjft(xj)

=

∑m
i=1 e

−yift(xi)e−yiwt+1ht+1(xi)

m∑
j=1

e−yjft(xj)

=

m∑
i=1

D
(t+1)
i e−yiwt+1ht+1(xi)

= e−wt+1

∑
i:yiht+1(xi)=1

D
(t+1)
i + ewt+1

∑
i:yiht+1(xi)=−1

D
(t+1)
i

= e−wt+1(1− εt+1) + ewt+1εt+1

=
1√

1/εt+1 − 1
(1− εt+1) +

√
1/εt+1 − 1 εt+1

=

√
εt+1

1− εt+1
(1− εt+1) +

√
1− εt+1

εt+1
εt+1

= 2
√
εt+1(1− εt+1).

By our assumption, εt+1 ≤ 1
2 − γ. Since the function g(a) = a(1 − a) is mono-

tonically increasing in [0, 1/2], we obtain that

2
√
εt+1(1− εt+1) ≤ 2

√(
1

2
− γ
)(

1

2
+ γ

)
=
√

1− 4γ2.

10.3 Linear Combinations of Base Hypotheses 137

Finally, using the inequality 1 − a ≤ e−a we have that
√

1− 4γ2 ≤ e−4γ2/2 =

e−2γ2

. This shows that Equation (10.3) holds and thus concludes our proof.

Each iteration of AdaBoost involves O(m) operations as well as a single call to

the weak learner. Therefore, if the weak learner can be implemented efficiently

(as happens in the case of ERM with respect to decision stumps) then the total

training process will be efficient.

Remark 10.2 Theorem 10.2 assumes that at each iteration of AdaBoost, the

weak learner returns a hypothesis with weighted sample error of at most 1/2−γ.

According to the definition of a weak learner, it can fail with probability δ. Using

the union bound, the probability that the weak learner will not fail at all of the

iterations is at least 1 − δT . As we show in Exercise 1, the dependence of the

sample complexity on δ can always be logarithmic in 1/δ, and therefore invoking

the weak learner with a very small δ is not problematic. We can therefore assume

that δT is also small. Furthermore, since the weak learner is only applied with

distributions over the training set, in many cases we can implement the weak

learner so that it will have a zero probability of failure (i.e., δ = 0). This is the

case, for example, in the weak learner that finds the minimum value of LD(h)

for decision stumps, as described in the previous section.

Theorem 10.2 tells us that the empirical risk of the hypothesis constructed by

AdaBoost goes to zero as T grows. However, what we really care about is the

true risk of the output hypothesis. To argue about the true risk, we note that the

output of AdaBoost is in fact a composition of a halfspace over the predictions

of the T weak hypotheses constructed by the weak learner. In the next section

we show that if the weak hypotheses come from a base hypothesis class of low

VC-dimension, then the estimation error of AdaBoost will be small; namely, the

true risk of the output of AdaBoost would not be very far from its empirical risk.

10.3 Linear Combinations of Base Hypotheses

As mentioned previously, a popular approach for constructing a weak learner

is to apply the ERM rule with respect to a base hypothesis class (e.g., ERM

over decision stumps). We have also seen that boosting outputs a composition

of a halfspace over the predictions of the weak hypotheses. Therefore, given a

base hypothesis class B (e.g., decision stumps), the output of AdaBoost will be

a member of the following class:

L(B, T) =

{
x 7→ sign

(
T∑
t=1

wtht(x)

)
: w ∈ RT , ∀t, ht ∈ B

}
. (10.4)

That is, each h ∈ L(B, T) is parameterized by T base hypotheses from B and

by a vector w ∈ RT . The prediction of such an h on an instance x is ob-

tained by first applying the T base hypotheses to construct the vector ψ(x) =

138 Boosting

(h1(x), . . . , hT (x)) ∈ RT , and then applying the (homogenous) halfspace defined

by w on ψ(x).

In this section we analyze the estimation error of L(B, T) by bounding the

VC-dimension of L(B, T) in terms of the VC-dimension of B and T . We will

show that, up to logarithmic factors, the VC-dimension of L(B, T) is bounded

by T times the VC-dimension of B. It follows that the estimation error of Ad-

aBoost grows linearly with T . On the other hand, the empirical risk of AdaBoost

decreases with T . In fact, as we demonstrate later, T can be used to decrease

the approximation error of L(B, T). Therefore, the parameter T of AdaBoost

enables us to control the bias-complexity tradeoff.

To demonstrate how the expressive power of L(B, T) increases with T , consider

the simple example, in which X = R and the base class is Decision Stumps,

HDS1 = {x 7→ sign(x− θ) · b : θ ∈ R, b ∈ {±1}}.

Note that in this one dimensional case, HDS1 is in fact equivalent to (nonho-

mogenous) halfspaces on R.

Now, let H be the rather complex class (compared to halfspaces on the line)

of piece-wise constant functions. Let gr be a piece-wise constant function with at

most r pieces; that is, there exist thresholds −∞ = θ0 < θ1 < θ2 < · · · < θr =∞
such that

gr(x) =

r∑
i=1

αi1[x∈(θi−1,θi]] ∀i, αi ∈ {±1}.

Denote by Gr the class of all such piece-wise constant classifiers with at most r

pieces.

In the following we show that GT ⊆ L(HDS1, T); namely, the class of halfspaces

over T decision stumps yields all the piece-wise constant classifiers with at most

T pieces.

Indeed, without loss of generality consider any g ∈ GT with αt = (−1)t. This

implies that if x is in the interval (θt−1, θt], then g(x) = (−1)t. For example:

Now, the function

h(x) = sign

(
T∑
t=1

wt sign(x− θt−1)

)
, (10.5)

where w1 = 0.5 and for t > 1, wt = (−1)t, is in L(HDS1, T) and is equal to g

(see Exercise 2).

10.3 Linear Combinations of Base Hypotheses 139

From this example we obtain that L(HDS1, T) can shatter any set of T + 1

instances in R; hence the VC-dimension of L(HDS1, T) is at least T+1. Therefore,

T is a parameter that can control the bias-complexity tradeoff: Enlarging T

yields a more expressive hypothesis class but on the other hand might increase

the estimation error. In the next subsection we formally upper bound the VC-

dimension of L(B, T) for any base class B.

10.3.1 The VC-Dimension of L(B, T)

The following lemma tells us that the VC-dimension of L(B, T) is upper bounded

by Õ(VCdim(B)T) (the Õ notation ignores constants and logarithmic factors).

lemma 10.3 Let B be a base class and let L(B, T) be as defined in Equa-

tion (10.4). Assume that both T and VCdim(B) are at least 3. Then,

VCdim(L(B, T)) ≤ T (VCdim(B) + 1) (3 log(T (VCdim(B) + 1)) + 2).

Proof Denote d = VCdim(B). Let C = {x1, . . . , xm} be a set that is shat-

tered by L(B, T). Each labeling of C by h ∈ L(B, T) is obtained by first choos-

ing h1, . . . , hT ∈ B and then applying a halfspace hypothesis over the vector

(h1(x), . . . , hT (x)). By Sauer’s lemma, there are at most (em/d)d different di-

chotomies (i.e., labelings) induced by B over C. Therefore, we need to choose

T hypotheses, out of at most (em/d)d different hypotheses. There are at most

(em/d)dT ways to do it. Next, for each such choice, we apply a linear predictor,

which yields at most (em/T)T dichotomies. Therefore, the overall number of

dichotomies we can construct is upper bounded by

(em/d)dT (em/T)T ≤ m(d+1)T ,

where we used the assumption that both d and T are at least 3. Since we assume

that C is shattered, we must have that the preceding is at least 2m, which yields

2m ≤ m(d+1)T .

Therefore,

m ≤ log(m)
(d+ 1)T

log(2)
.

Lemma A.1 in Chapter A tells us that a necessary condition for the above to

hold is that

m ≤ 2
(d+ 1)T

log(2)
log

(d+ 1)T

log(2)
≤ (d+ 1)T (3 log((d+ 1)T) + 2),

which concludes our proof.

In Exercise 4 we show that for some base classes,B, it also holds that VCdim(L(B, T)) ≥
Ω(VCdim(B)T).

140 Boosting

A B

C D

Figure 10.1 The four types of functions, g, used by the base hypotheses for face
recognition. The value of g for type A or B is the difference between the sum of the
pixels within two rectangular regions. These regions have the same size and shape and
are horizontally or vertically adjacent. For type C, the value of g is the sum within
two outside rectangles subtracted from the sum in a center rectangle. For type D, we
compute the difference between diagonal pairs of rectangles.

10.4 AdaBoost for Face Recognition

We now turn to a base hypothesis that has been proposed by Viola and Jones for

the task of face recognition. In this task, the instance space is images, represented

as matrices of gray level values of pixels. To be concrete, let us take images of

size 24 × 24 pixels, and therefore our instance space is the set of real valued

matrices of size 24 × 24. The goal is to learn a classifier, h : X → {±1}, that

given an image as input, should output whether the image is of a human face or

not.

Each hypothesis in the base class is of the form h(x) = f(g(x)), where f is a

decision stump hypothesis and g : R24,24 → R is a function that maps an image

to a scalar. Each function g is parameterized by

• An axis aligned rectangle R. Since each image is of size 24× 24, there are at

most 244 axis aligned rectangles.

• A type, t ∈ {A,B,C,D}. Each type corresponds to a mask, as depicted in

Figure 10.1.

To calculate g we stretch the mask t to fit the rectangle R and then calculate

the sum of the pixels (that is, sum of their gray level values) that lie within the

red rectangles and subtract it from the sum of pixels in the blue rectangles.

Since the number of such functions g is at most 244 · 4, we can implement a

weak learner for the base hypothesis class by first calculating all the possible

outputs of g on each image, and then apply the weak learner of decision stumps

described in the previous subsection. It is possible to perform the first step very

10.5 Summary 141

Figure 5: The first and second features selected by AdaBoost. The two features are shown in the top row
and then overlayed on a typical training face in the bottom row. The first feature measures the difference in
intensity between the region of the eyes and a region across the upper cheeks. The feature capitalizes on the
observation that the eye region is often darker than the cheeks. The second feature compares the intensities
in the eye regions to the intensity across the bridge of the nose.

directly increases computation time.

4 The Attentional Cascade

This section describes an algorithm for constructing a cascade of classifiers which achieves increased detec-
tion performance while radically reducing computation time. The key insight is that smaller, and therefore
more efficient, boosted classifiers can be constructed which reject many of the negative sub-windows while
detecting almost all positive instances. Simpler classifiers are used to reject the majority of sub-windows
before more complex classifiers are called upon to achieve low false positive rates.
Stages in the cascade are constructed by training classifiers using AdaBoost. Starting with a two-feature

strong classifier, an effective face filter can be obtained by adjusting the strong classifier threshold to min-
imize false negatives. The initial AdaBoost threshold, , is designed to yield a low error rate on
the training data. A lower threshold yields higher detection rates and higher false positive rates. Based on
performance measured using a validation training set, the two-feature classifier can be adjusted to detect
100% of the faces with a false positive rate of 40%. See Figure 5 for a description of the two features used
in this classifier.
The detection performance of the two-feature classifier is far from acceptable as an object detection

system. Nevertheless the classifier can significantly reduce the number sub-windows that need further pro-
cessing with very few operations:

1. Evaluate the rectangle features (requires between 6 and 9 array references per feature).

2. Compute the weak classifier for each feature (requires one threshold operation per feature).

11

Figure 10.2 The first and second features selected by AdaBoost, as implemented by
Viola and Jones. The two features are shown in the top row and then overlaid on a
typical training face in the bottom row. The first feature measures the difference in
intensity between the region of the eyes and a region across the upper cheeks. The
feature capitalizes on the observation that the eye region is often darker than the
cheeks. The second feature compares the intensities in the eye regions to the intensity
across the bridge of the nose.

efficiently by a preprocessing step in which we calculate the integral image of

each image in the training set. See Exercise 5 for details.

In Figure 10.2 we depict the first two features selected by AdaBoost when

running it with the base features proposed by Viola and Jones.

10.5 Summary

Boosting is a method for amplifying the accuracy of weak learners. In this chapter

we described the AdaBoost algorithm. We have shown that after T iterations of

AdaBoost, it returns a hypothesis from the class L(B, T), obtained by composing

a linear classifier on T hypotheses from a base class B. We have demonstrated

how the parameter T controls the tradeoff between approximation and estimation

errors. In the next chapter we will study how to tune parameters such as T , based

on the data.

10.6 Bibliographic Remarks

As mentioned before, boosting stemmed from the theoretical question of whether

an efficient weak learner can be “boosted” into an efficient strong learner (Kearns

& Valiant 1988) and solved by Schapire (1990). The AdaBoost algorithm has

been proposed in Freund & Schapire (1995).

Boosting can be viewed from many perspectives. In the purely theoretical

context, AdaBoost can be interpreted as a negative result: If strong learning of

a hypothesis class is computationally hard, so is weak learning of this class. This

negative result can be useful for showing hardness of agnostic PAC learning of

a class B based on hardness of PAC learning of some other class H, as long as

142 Boosting

H is weakly learnable using B. For example, Klivans & Sherstov (2006) have

shown that PAC learning of the class of intersection of halfspaces is hard (even

in the realizable case). This hardness result can be used to show that agnostic

PAC learning of a single halfspace is also computationally hard (Shalev-Shwartz,

Shamir & Sridharan 2010). The idea is to show that an agnostic PAC learner

for a single halfspace can yield a weak learner for the class of intersection of

halfspaces, and since such a weak learner can be boosted, we will obtain a strong

learner for the class of intersection of halfspaces.

AdaBoost also shows an equivalence between the existence of a weak learner

and separability of the data using a linear classifier over the predictions of base

hypotheses. This result is closely related to von Neumann’s minimax theorem

(von Neumann 1928), a fundamental result in game theory.

AdaBoost is also related to the concept of margin, which we will study later on

in Chapter 15. It can also be viewed as a forward greedy selection algorithm, a

topic that will be presented in Chapter 25. A recent book by Schapire & Freund

(2012) covers boosting from all points of view, and gives easy access to the wealth

of research that this field has produced.

10.7 Exercises

1. Boosting the Confidence: Let A be an algorithm that guarantees the fol-

lowing: There exist some constant δ0 ∈ (0, 1) and a function mH : (0, 1)→ N
such that for every ε ∈ (0, 1), if m ≥ mH(ε) then for every distribution D it

holds that with probability of at least 1− δ0, LD(A(S)) ≤ minh∈H LD(h) + ε.

Suggest a procedure that relies on A and learns H in the usual agnostic

PAC learning model and has a sample complexity of

mH(ε, δ) ≤ kmH(ε) +

⌈
2 log(4k/δ)

ε2

⌉
,

where

k = dlog(δ)/ log(δ0)e.

Hint: Divide the data into k + 1 chunks, where each of the first k chunks

is of size mH(ε) examples. Train the first k chunks using A. Argue that the

probability that for all of these chunks we have LD(A(S)) > minh∈H LD(h)+ε

is at most δk0 ≤ δ/2. Finally, use the last chunk to choose from the k hypotheses

that A generated from the k chunks (by relying on Corollary 4.6).

2. Prove that the function h given in Equation (10.5) equals the piece-wise con-

stant function defined according to the same thresholds as h.

3. We have informally argued that the AdaBoost algorithm uses the weighting

mechanism to “force” the weak learner to focus on the problematic examples

in the next iteration. In this question we will find some rigorous justification

for this argument.

10.7 Exercises 143

Show that the error of ht w.r.t. the distribution D(t+1) is exactly 1/2. That

is, show that for every t ∈ [T]

m∑
i=1

D
(t+1)
i 1[yi 6=ht(xi)] = 1/2.

4. In this exercise we discuss the VC-dimension of classes of the form L(B, T).

We proved an upper bound of O(dT log(dT)), where d = VCdim(B). Here we

wish to prove an almost matching lower bound. However, that will not be the

case for all classes B.

1. Note that for every class B and every number T ≥ 1, VCdim(B) ≤
VCdim(L(B, T)). Find a class B for which VCdim(B) = VCdim(L(B, T))

for every T ≥ 1.

Hint: Take X to be a finite set.

2. Let Bd be the class of decision stumps over Rd. Prove that log(d) ≤
VCdim(Bd) ≤ 5 + 2 log(d).

Hints:

• For the upper bound, rely on Exercise 11.

• For the lower bound, assume d = 2k. Let A be a k × d matrix whose

columns are all the d binary vectors in {±1}k. The rows of A form

a set of k vectors in Rd. Show that this set is shattered by decision

stumps over Rd.
3. Let T ≥ 1 be any integer. Prove that VCdim(L(Bd, T)) ≥ 0.5T log(d).

Hint: Construct a set of T
2 k instances by taking the rows of the matrix A

from the previous question, and the rows of the matrices 2A, 3A, 4A, . . . , T2A.

Show that the resulting set is shattered by L(Bd, T).

5. Efficiently Calculating the Viola and Jones Features Using an Inte-

gral Image: Let A be a 24× 24 matrix representing an image. The integral

image of A, denoted by I(A), is the matrix B such that Bi,j =
∑
i′≤i,j′≤j Ai,j .

• Show that I(A) can be calculated from A in time linear in the size of A.

• Show how every Viola and Jones feature can be calculated from I(A) in a

constant amount of time (that is, the runtime does not depend on the

size of the rectangle defining the feature).

11 Model Selection and Validation

In the previous chapter we have described the AdaBoost algorithm and have

shown how the parameter T of AdaBoost controls the bias-complexity trade-

off. But, how do we set T in practice? More generally, when approaching some

practical problem, we usually can think of several algorithms that may yield a

good solution, each of which might have several parameters. How can we choose

the best algorithm for the particular problem at hand? And how do we set the

algorithm’s parameters? This task is often called model selection.

To illustrate the model selection task, consider the problem of learning a one

dimensional regression function, h : R → R. Suppose that we obtain a training

set as depicted in the figure.

We can consider fitting a polynomial to the data, as described in Chapter 9.

However, we might be uncertain regarding which degree d would give the best

results for our data set: A small degree may not fit the data well (i.e., it will

have a large approximation error), whereas a high degree may lead to overfitting

(i.e., it will have a large estimation error). In the following we depict the result

of fitting a polynomial of degrees 2, 3, and 10. It is easy to see that the empirical

risk decreases as we enlarge the degree. However, looking at the graphs, our

intuition tells us that setting the degree to 3 may be better than setting it to 10.

It follows that the empirical risk alone is not enough for model selection.

degree 2 degree 3 degree 10

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

11.1 Model Selection Using SRM 145

In this chapter we will present two approaches for model selection. The first

approach is based on the Structural Risk Minimization (SRM) paradigm we

have described and analyzed in Chapter 7.2. SRM is particularly useful when

a learning algorithm depends on a parameter that controls the bias-complexity

tradeoff (such as the degree of the fitted polynomial in the preceding example

or the parameter T in AdaBoost). The second approach relies on the concept

of validation. The basic idea is to partition the training set into two sets. One

is used for training each of the candidate models, and the second is used for

deciding which of them yields the best results.

In model selection tasks, we try to find the right balance between approxi-

mation and estimation errors. More generally, if our learning algorithm fails to

find a predictor with a small risk, it is important to understand whether we

suffer from overfitting or underfitting. In Section 11.3 we discuss how this can

be achieved.

11.1 Model Selection Using SRM

The SRM paradigm has been described and analyzed in Section 7.2. Here we

show how SRM can be used for tuning the tradeoff between bias and complexity

without deciding on a specific hypothesis class in advance. Consider a countable

sequence of hypothesis classes H1,H2,H3, For example, in the problem of

polynomial regression mentioned, we can take Hd to be the set of polynomials

of degree at most d. Another example is taking Hd to be the class L(B, d) used

by AdaBoost, as described in the previous chapter.

We assume that for every d, the class Hd enjoys the uniform convergence

property (see Definition 4.3 in Chapter 4) with a sample complexity function of

the form

mUC

Hd(ε, δ) ≤ g(d) log(1/δ)

ε2
, (11.1)

where g : N→ R is some monotonically increasing function. For example, in the

case of binary classification problems, we can take g(d) to be the VC-dimension

of the class Hd multiplied by a universal constant (the one appearing in the

fundamental theorem of learning; see Theorem 6.8). For the classes L(B, d) used

by AdaBoost, the function g will simply grow with d.

Recall that the SRM rule follows a “bound minimization” approach, where in

our case the bound is as follows: With probability of at least 1 − δ, for every

d ∈ N and h ∈ Hd,

LD(h) ≤ LS(h) +

√
g(d)(log(1/δ) + 2 log(d) + log(π2/6))

m
. (11.2)

This bound, which follows directly from Theorem 7.4, shows that for every d and

every h ∈ Hd, the true risk is bounded by two terms – the empirical risk, LS(h),

146 Model Selection and Validation

and a complexity term that depends on d. The SRM rule will search for d and

h ∈ Hd that minimize the right-hand side of Equation (11.2).

Getting back to the example of polynomial regression described earlier, even

though the empirical risk of the 10th degree polynomial is smaller than that of

the 3rd degree polynomial, we would still prefer the 3rd degree polynomial since

its complexity (as reflected by the value of the function g(d)) is much smaller.

While the SRM approach can be useful in some situations, in many practical

cases the upper bound given in Equation (11.2) is pessimistic. In the next section

we present a more practical approach.

11.2 Validation

We would often like to get a better estimation of the true risk of the output pre-

dictor of a learning algorithm. So far we have derived bounds on the estimation

error of a hypothesis class, which tell us that for all hypotheses in the class, the

true risk is not very far from the empirical risk. However, these bounds might be

loose and pessimistic, as they hold for all hypotheses and all possible data dis-

tributions. A more accurate estimation of the true risk can be obtained by using

some of the training data as a validation set, over which one can evalutate the

success of the algorithm’s output predictor. This procedure is called validation.

Naturally, a better estimation of the true risk is useful for model selection, as

we will describe in Section 11.2.2.

11.2.1 Hold Out Set

The simplest way to estimate the true error of a predictor h is by sampling an ad-

ditional set of examples, independent of the training set, and using the empirical

error on this validation set as our estimator. Formally, let V = (x1, y1), . . . , (xmv , ymv)

be a set of fresh mv examples that are sampled according to D (independently of

the m examples of the training set S). Using Hoeffding’s inequality (Lemma 4.5)

we have the following:

theorem 11.1 Let h be some predictor and assume that the loss function is in

[0, 1]. Then, for every δ ∈ (0, 1), with probability of at least 1− δ over the choice

of a validation set V of size mv we have

|LV (h)− LD(h)| ≤

√
log(2/δ)

2mv
.

The bound in Theorem 11.1 does not depend on the algorithm or the training

set used to construct h and is tighter than the usual bounds that we have seen so

far. The reason for the tightness of this bound is that it is in terms of an estimate

on a fresh validation set that is independent of the way h was generated. To

illustrate this point, suppose that h was obtained by applying an ERM predictor

11.2 Validation 147

with respect to a hypothesis class of VC-dimension d, over a training set of m

examples. Then, from the fundamental theorem of learning (Theorem 6.8) we

obtain the bound

LD(h) ≤ LS(h) +

√
C
d+ log(1/δ)

m
,

where C is the constant appearing in Theorem 6.8. In contrast, from Theo-

rem 11.1 we obtain the bound

LD(h) ≤ LV (h) +

√
log(2/δ)

2mv
.

Therefore, taking mv to be order of m, we obtain an estimate that is more

accurate by a factor that depends on the VC-dimension. On the other hand, the

price we pay for using such an estimate is that it requires an additional sample

on top of the sample used for training the learner.

Sampling a training set and then sampling an independent validation set is

equivalent to randomly partitioning our random set of examples into two parts,

using one part for training and the other one for validation. For this reason, the

validation set is often referred to as a hold out set.

11.2.2 Validation for Model Selection

Validation can be naturally used for model selection as follows. We first train

different algorithms (or the same algorithm with different parameters) on the

given training set. Let H = {h1, . . . , hr} be the set of all output predictors of the

different algorithms. For example, in the case of training polynomial regressors,

we would have each hr be the output of polynomial regression of degree r. Now,

to choose a single predictor from H we sample a fresh validation set and choose

the predictor that minimizes the error over the validation set. In other words,

we apply ERMH over the validation set.

This process is very similar to learning a finite hypothesis class. The only

difference is that H is not fixed ahead of time but rather depends on the train-

ing set. However, since the validation set is independent of the training set we

get that it is also independent of H and therefore the same technique we used

to derive bounds for finite hypothesis classes holds here as well. In particular,

combining Theorem 11.1 with the union bound we obtain:

theorem 11.2 Let H = {h1, . . . , hr} be an arbitrary set of predictors and

assume that the loss function is in [0, 1]. Assume that a validation set V of size

mv is sampled independent of H. Then, with probability of at least 1− δ over the

choice of V we have

∀h ∈ H, |LD(h)− LV (h)| ≤

√
log(2|H|/δ)

2mv
.

148 Model Selection and Validation

This theorem tells us that the error on the validation set approximates the

true error as long as H is not too large. However, if we try too many methods

(resulting in |H| that is large relative to the size of the validation set) then we’re

in danger of overfitting.

To illustrate how validation is useful for model selection, consider again the

example of fitting a one dimensional polynomial as described in the beginning

of this chapter. In the following we depict the same training set, with ERM

polynomials of degree 2, 3, and 10, but this time we also depict an additional

validation set (marked as red, unfilled circles). The polynomial of degree 10 has

minimal training error, yet the polynomial of degree 3 has the minimal validation

error, and hence it will be chosen as the best model.

11.2.3 The Model-Selection Curve

The model selection curve shows the training error and validation error as a func-

tion of the complexity of the model considered. For example, for the polynomial

fitting problem mentioned previously, the curve will look like:

11.2 Validation 149

2 4 6 8 10

0

0.1

0.2

0.3

0.4

d

er
ro

r

train
validation

As can be shown, the training error is monotonically decreasing as we increase

the polynomial degree (which is the complexity of the model in our case). On

the other hand, the validation error first decreases but then starts to increase,

which indicates that we are starting to suffer from overfitting.

Plotting such curves can help us understand whether we are searching the

correct regime of our parameter space. Often, there may be more than a single

parameter to tune, and the possible number of values each parameter can take

might be quite large. For example, in Chapter 13 we describe the concept of

regularization, in which the parameter of the learning algorithm is a real number.

In such cases, we start with a rough grid of values for the parameter(s) and plot

the corresponding model-selection curve. On the basis of the curve we will zoom

in to the correct regime and employ a finer grid to search over. It is important to

verify that we are in the relevant regime. For example, in the polynomial fitting

problem described, if we start searching degrees from the set of values {1, 10, 20}
and do not employ a finer grid based on the resulting curve, we will end up with

a rather poor model.

11.2.4 k-Fold Cross Validation

The validation procedure described so far assumes that data is plentiful and that

we have the ability to sample a fresh validation set. But in some applications,

data is scarce and we do not want to “waste” data on validation. The k-fold

cross validation technique is designed to give an accurate estimate of the true

error without wasting too much data.

In k-fold cross validation the original training set is partitioned into k subsets

(folds) of size m/k (for simplicity, assume that m/k is an integer). For each fold,

the algorithm is trained on the union of the other folds and then the error of its

output is estimated using the fold. Finally, the average of all these errors is the

150 Model Selection and Validation

estimate of the true error. The special case k = m, where m is the number of

examples, is called leave-one-out (LOO).

k-Fold cross validation is often used for model selection (or parameter tuning),

and once the best parameter is chosen, the algorithm is retrained using this

parameter on the entire training set. A pseudocode of k-fold cross validation

for model selection is given in the following. The procedure receives as input a

training set, S, a set of possible parameter values, Θ, an integer, k, representing

the number of folds, and a learning algorithm, A, which receives as input a

training set as well as a parameter θ ∈ Θ. It outputs the best parameter as well

as the hypothesis trained by this parameter on the entire training set.

k-Fold Cross Validation for Model Selection

input:

training set S = (x1, y1), . . . , (xm, ym)

set of parameter values Θ

learning algorithm A

integer k

partition S into S1, S2, . . . , Sk
foreach θ ∈ Θ

for i = 1 . . . k

hi,θ = A(S \ Si; θ)
error(θ) = 1

k

∑k
i=1 LSi(hi,θ)

output

θ? = argminθ [error(θ)]

hθ? = A(S; θ?)

The cross validation method often works very well in practice. However, it

might sometime fail, as the artificial example given in Exercise 1 shows. Rig-

orously understanding the exact behavior of cross validation is still an open

problem. Rogers and Wagner (Rogers & Wagner 1978) have shown that for k

local rules (e.g., k Nearest Neighbor; see Chapter 19) the cross validation proce-

dure gives a very good estimate of the true error. Other papers show that cross

validation works for stable algorithms (we will study stability and its relation to

learnability in Chapter 13).

11.2.5 Train-Validation-Test Split

In most practical applications, we split the available examples into three sets.

The first set is used for training our algorithm and the second is used as a

validation set for model selection. After we select the best model, we test the

performance of the output predictor on the third set, which is often called the

“test set.” The number obtained is used as an estimator of the true error of the

learned predictor.

11.3 What to Do If Learning Fails 151

11.3 What to Do If Learning Fails

Consider the following scenario: You were given a learning task and have ap-

proached it with a choice of a hypothesis class, a learning algorithm, and param-

eters. You used a validation set to tune the parameters and tested the learned

predictor on a test set. The test results, unfortunately, turn out to be unsatis-

factory. What went wrong then, and what should you do next?

There are many elements that can be “fixed.” The main approaches are listed

in the following:

• Get a larger sample

• Change the hypothesis class by:

– Enlarging it

– Reducing it

– Completely changing it

– Changing the parameters you consider

• Change the feature representation of the data

• Change the optimization algorithm used to apply your learning rule

In order to find the best remedy, it is essential first to understand the cause

of the bad performance. Recall that in Chapter 5 we decomposed the true er-

ror of the learned predictor into approximation error and estimation error. The

approximation error is defined to be LD(h?) for some h? ∈ argminh∈H LD(h),

while the estimation error is defined to be LD(hS) − LD(h?), where hS is the

learned predictor (which is based on the training set S).

The approximation error of the class does not depend on the sample size or

on the algorithm being used. It only depends on the distribution D and on the

hypothesis class H. Therefore, if the approximation error is large, it will not help

us to enlarge the training set size, and it also does not make sense to reduce the

hypothesis class. What can be beneficial in this case is to enlarge the hypothesis

class or completely change it (if we have some alternative prior knowledge in

the form of a different hypothesis class). We can also consider applying the

same hypothesis class but on a different feature representation of the data (see

Chapter 25).

The estimation error of the class does depend on the sample size. Therefore, if

we have a large estimation error we can make an effort to obtain more training

examples. We can also consider reducing the hypothesis class. However, it doesn’t

make sense to enlarge the hypothesis class in that case.

Error Decomposition Using Validation
We see that understanding whether our problem is due to approximation error

or estimation error is very useful for finding the best remedy. In the previous

section we saw how to estimate LD(hS) using the empirical risk on a validation

set. However, it is more difficult to estimate the approximation error of the class.

152 Model Selection and Validation

Instead, we give a different error decomposition, one that can be estimated from

the train and validation sets.

LD(hS) = (LD(hS)− LV (hS)) + (LV (hS)− LS(hS)) + LS(hS).

The first term, (LD(hS) − LV (hS)), can be bounded quite tightly using Theo-

rem 11.1. Intuitively, when the second term, (LV (hS)−LS(hS)), is large we say

that our algorithm suffers from “overfitting” while when the empirical risk term,

LS(hS), is large we say that our algorithm suffers from “underfitting.” Note that

these two terms are not necessarily good estimates of the estimation and ap-

proximation errors. To illustrate this, consider the case in which H is a class of

VC-dimension d, and D is a distribution such that the approximation error of H
with respect to D is 1/4. As long as the size of our training set is smaller than

d we will have LS(hS) = 0 for every ERM hypothesis. Therefore, the training

risk, LS(hS), and the approximation error, LD(h?), can be significantly different.

Nevertheless, as we show later, the values of LS(hS) and (LV (hS)−LS(hS)) still

provide us useful information.

Consider first the case in which LS(hS) is large. We can write

LS(hS) = (LS(hS)− LS(h?)) + (LS(h?)− LD(h?)) + LD(h?).

When hS is an ERMH hypothesis we have that LS(hS)−LS(h?) ≤ 0. In addition,

since h? does not depend on S, the term (LS(h?)−LD(h?)) can be bounded quite

tightly (as in Theorem 11.1). The last term is the approximation error. It follows

that if LS(hS) is large then so is the approximation error, and the remedy to the

failure of our algorithm should be tailored accordingly (as discussed previously).

Remark 11.1 It is possible that the approximation error of our class is small,

yet the value of LS(hS) is large. For example, maybe we had a bug in our ERM

implementation, and the algorithm returns a hypothesis hS that is not an ERM.

It may also be the case that finding an ERM hypothesis is computationally hard,

and our algorithm applies some heuristic trying to find an approximate ERM. In

some cases, it is hard to know how good hS is relative to an ERM hypothesis. But,

sometimes it is possible at least to know whether there are better hypotheses.

For example, in the next chapter we will study convex learning problems in

which there are optimality conditions that can be checked to verify whether

our optimization algorithm converged to an ERM solution. In other cases, the

solution may depend on randomness in initializing the algorithm, so we can try

different randomly selected initial points to see whether better solutions pop out.

Next consider the case in which LS(hS) is small. As we argued before, this

does not necessarily imply that the approximation error is small. Indeed, consider

two scenarios, in both of which we are trying to learn a hypothesis class of

VC-dimension d using the ERM learning rule. In the first scenario, we have a

training set of m < d examples and the approximation error of the class is high.

In the second scenario, we have a training set of m > 2d examples and the

11.3 What to Do If Learning Fails 153

m

error

train error

validation error

m

error

train error

validation error

Figure 11.1 Examples of learning curves. Left: This learning curve corresponds to the
scenario in which the number of examples is always smaller than the VC dimension of
the class. Right: This learning curve corresponds to the scenario in which the
approximation error is zero and the number of examples is larger than the VC
dimension of the class.

approximation error of the class is zero. In both cases LS(hS) = 0. How can we

distinguish between the two cases?

Learning Curves
One possible way to distinguish between the two cases is by plotting learning

curves. To produce a learning curve we train the algorithm on prefixes of the

data of increasing sizes. For example, we can first train the algorithm on the

first 10% of the examples, then on 20% of them, and so on. For each prefix we

calculate the training error (on the prefix the algorithm is being trained on)

and the validation error (on a predefined validation set). Such learning curves

can help us distinguish between the two aforementioned scenarios. In the first

scenario we expect the validation error to be approximately 1/2 for all prefixes,

as we didn’t really learn anything. In the second scenario the validation error

will start as a constant but then should start decreasing (it must start decreasing

once the training set size is larger than the VC-dimension). An illustration of

the two cases is given in Figure 11.1.

In general, as long as the approximation error is greater than zero we expect

the training error to grow with the sample size, as a larger amount of data points

makes it harder to provide an explanation for all of them. On the other hand,

the validation error tends to decrease with the increase in sample size. If the

VC-dimension is finite, when the sample size goes to infinity, the validation and

train errors converge to the approximation error. Therefore, by extrapolating

the training and validation curves we can try to guess the value of the approx-

imation error, or at least to get a rough estimate on an interval in which the

approximation error resides.

Getting back to the problem of finding the best remedy for the failure of

our algorithm, if we observe that LS(hS) is small while the validation error is

large, then in any case we know that the size of our training set is not sufficient

for learning the class H. We can then plot a learning curve. If we see that the

154 Model Selection and Validation

validation error is starting to decrease then the best solution is to increase the

number of examples (if we can afford to enlarge the data). Another reasonable

solution is to decrease the complexity of the hypothesis class. On the other hand,

if we see that the validation error is kept around 1/2 then we have no evidence

that the approximation error of H is good. It may be the case that increasing

the training set size will not help us at all. Obtaining more data can still help

us, as at some point we can see whether the validation error starts to decrease

or whether the training error starts to increase. But, if more data is expensive,

it may be better first to try to reduce the complexity of the hypothesis class.

To summarize the discussion, the following steps should be applied:

1. If learning involves parameter tuning, plot the model-selection curve to make

sure that you tuned the parameters appropriately (see Section 11.2.3).

2. If the training error is excessively large consider enlarging the hypothesis class,

completely change it, or change the feature representation of the data.

3. If the training error is small, plot learning curves and try to deduce from them

whether the problem is estimation error or approximation error.

4. If the approximation error seems to be small enough, try to obtain more data.

If this is not possible, consider reducing the complexity of the hypothesis class.

5. If the approximation error seems to be large as well, try to change the hy-

pothesis class or the feature representation of the data completely.

11.4 Summary

Model selection is the task of selecting an appropriate model for the learning

task based on the data itself. We have shown how this can be done using the

SRM learning paradigm or using the more practical approach of validation. If

our learning algorithm fails, a decomposition of the algorithm’s error should be

performed using learning curves, so as to find the best remedy.

11.5 Exercises

1. Failure of k-fold cross validation Consider a case in that the label is

chosen at random according to P[y = 1] = P[y = 0] = 1/2. Consider a

learning algorithm that outputs the constant predictor h(x) = 1 if the parity

of the labels on the training set is 1 and otherwise the algorithm outputs the

constant predictor h(x) = 0. Prove that the difference between the leave-one-

out estimate and the true error in such a case is always 1/2.

2. LetH1, . . . ,Hk be k hypothesis classes. Suppose you are given m i.i.d. training

examples and you would like to learn the class H = ∪ki=1Hi. Consider two

alternative approaches:

• Learn H on the m examples using the ERM rule

11.5 Exercises 155

• Divide the m examples into a training set of size (1−α)m and a validation

set of size αm, for some α ∈ (0, 1). Then, apply the approach of model

selection using validation. That is, first train each class Hi on the (1−
α)m training examples using the ERM rule with respect to Hi, and let

ĥ1, . . . , ĥk be the resulting hypotheses. Second, apply the ERM rule with

respect to the finite class {ĥ1, . . . , ĥk} on the αm validation examples.

Describe scenarios in which the first method is better than the second and

vice versa.

12 Convex Learning Problems

In this chapter we introduce convex learning problems. Convex learning comprises

an important family of learning problems, mainly because most of what we can

learn efficiently falls into it. We have already encountered linear regression with

the squared loss and logistic regression, which are convex problems, and indeed

they can be learned efficiently. We have also seen nonconvex problems, such as

halfspaces with the 0-1 loss, which is known to be computationally hard to learn

in the unrealizable case.

In general, a convex learning problem is a problem whose hypothesis class is a

convex set, and whose loss function is a convex function for each example. We be-

gin the chapter with some required definitions of convexity. Besides convexity, we

will define Lipschitzness and smoothness, which are additional properties of the

loss function that facilitate successful learning. We next turn to defining convex

learning problems and demonstrate the necessity for further constraints such as

Boundedness and Lipschitzness or Smoothness. We define these more restricted

families of learning problems and claim that Convex-Smooth/Lipschitz-Bounded

problems are learnable. These claims will be proven in the next two chapters, in

which we will present two learning paradigms that successfully learn all problems

that are either convex-Lipschitz-bounded or convex-smooth-bounded.

Finally, in Section 12.3, we show how one can handle some nonconvex problems

by minimizing “surrogate” loss functions that are convex (instead of the original

nonconvex loss function). Surrogate convex loss functions give rise to efficient

solutions but might increase the risk of the learned predictor.

12.1 Convexity, Lipschitzness, and Smoothness

12.1.1 Convexity

definition 12.1 (Convex Set) A set C in a vector space is convex if for any

two vectors u,v in C, the line segment between u and v is contained in C. That

is, for any α ∈ [0, 1] we have that αu + (1− α)v ∈ C.

Examples of convex and nonconvex sets in R2 are given in the following. For

the nonconvex sets, we depict two points in the set such that the line between

the two points is not contained in the set.

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

12.1 Convexity, Lipschitzness, and Smoothness 157

non-convex convex

Given α ∈ [0, 1], the combination, αu + (1− α)v of the points u,v is called a

convex combination.

definition 12.2 (Convex Function) Let C be a convex set. A function f :

C → R is convex if for every u,v ∈ C and α ∈ [0, 1],

f(αu + (1− α)v) ≤ αf(u) + (1− α)f(v) .

In words, f is convex if for any u,v, the graph of f between u and v lies below

the line segment joining f(u) and f(v). An illustration of a convex function,

f : R→ R, is depicted in the following.

f(u)

f(v)

u

αu + (1− α)v

v

αf(u) + (1− α)f(v)

f(αu + (1− α)v)

The epigraph of a function f is the set

epigraph(f) = {(x, β) : f(x) ≤ β}. (12.1)

It is easy to verify that a function f is convex if and only if its epigraph is a

convex set. An illustration of a nonconvex function f : R → R, along with its

epigraph, is given in the following.

158 Convex Learning Problems

x

f(x)

An important property of convex functions is that every local minimum of the

function is also a global minimum. Formally, let B(u, r) = {v : ‖v− u‖ ≤ r} be

a ball of radius r centered around u. We say that f(u) is a local minimum of f

at u if there exists some r > 0 such that for all v ∈ B(u, r) we have f(v) ≥ f(u).

It follows that for any v (not necessarily in B), there is a small enough α > 0

such that u + α(v − u) ∈ B(u, r) and therefore

f(u) ≤ f(u + α(v − u)) . (12.2)

If f is convex, we also have that

f(u + α(v − u)) = f(αv + (1− α)u) ≤ (1− α)f(u) + αf(v) . (12.3)

Combining these two equations and rearranging terms, we conclude that f(u) ≤
f(v). Since this holds for every v, it follows that f(u) is also a global minimum

of f .

Another important property of convex functions is that for every w we can

construct a tangent to f at w that lies below f everywhere. If f is differentiable,

this tangent is the linear function l(u) = f(w) + 〈∇f(w),u−w〉, where ∇f(w)

is the gradient of f at w, namely, the vector of partial derivatives of f , ∇f(w) =(
∂f(w)
∂w1

, . . . , ∂f(w)
∂wd

)
. That is, for convex differentiable functions,

∀u, f(u) ≥ f(w) + 〈∇f(w),u−w〉. (12.4)

In Chapter 14 we will generalize this inequality to nondifferentiable functions.

An illustration of Equation (12.4) is given in the following.

12.1 Convexity, Lipschitzness, and Smoothness 159

f(w)

f(u)

w u

f(
w

) +
〈u
−
w
,∇
f(
w

)〉

If f is a scalar differentiable function, there is an easy way to check if it is

convex.

lemma 12.3 Let f : R → R be a scalar twice differential function, and let

f ′, f ′′ be its first and second derivatives, respectively. Then, the following are

equivalent:

1. f is convex

2. f ′ is monotonically nondecreasing

3. f ′′ is nonnegative

Example 12.1

• The scalar function f(x) = x2 is convex. To see this, note that f ′(x) = 2x

and f ′′(x) = 2 > 0.

• The scalar function f(x) = log(1+exp(x)) is convex. To see this, observe that

f ′(x) = exp(x)
1+exp(x) = 1

exp(−x)+1 . This is a monotonically increasing function

since the exponent function is a monotonically increasing function.

The following claim shows that the composition of a convex scalar function

with a linear function yields a convex vector-valued function.

claim 12.4 Assume that f : Rd → R can be written as f(w) = g(〈w,x〉+ y),

for some x ∈ Rd, y ∈ R, and g : R → R. Then, convexity of g implies the

convexity of f .

Proof Let w1,w2 ∈ Rd and α ∈ [0, 1]. We have

f(αw1 + (1− α)w2) = g(〈αw1 + (1− α)w2,x〉+ y)

= g(α〈w1,x〉+ (1− α)〈w2,x〉+ y)

= g(α(〈w1,x〉+ y) + (1− α)(〈w2,x〉+ y))

≤ αg(〈w1,x〉+ y) + (1− α)g(〈w2,x〉+ y),

where the last inequality follows from the convexity of g.

Example 12.2

160 Convex Learning Problems

• Given some x ∈ Rd and y ∈ R, let f : Rd → R be defined as f(w) =

(〈w,x〉 − y)2. Then, f is a composition of the function g(a) = a2 onto a

linear function, and hence f is a convex function.

• Given some x ∈ Rd and y ∈ {±1}, let f : Rd → R be defined as f(w) =

log(1 + exp(−y〈w,x〉)). Then, f is a composition of the function g(a) =

log(1 + exp(a)) onto a linear function, and hence f is a convex function.

Finally, the following lemma shows that the maximum of convex functions is

convex and that a weighted sum of convex functions, with nonnegative weights,

is also convex.

claim 12.5 For i = 1, . . . , r, let fi : Rd → R be a convex function. The

following functions from Rd to R are also convex.

• g(x) = maxi∈[r] fi(x)

• g(x) =
∑r
i=1 wifi(x), where for all i, wi ≥ 0.

Proof The first claim follows by

g(αu+ (1− α)v) = max
i
fi(αu+ (1− α)v)

≤ max
i

[αfi(u) + (1− α)fi(v)]

≤ αmax
i
fi(u) + (1− α) max

i
fi(v)

= αg(u) + (1− α)g(v).

For the second claim

g(αu+ (1− α)v) =
∑
i

wifi(αu+ (1− α)v)

≤
∑
i

wi [αfi(u) + (1− α)fi(v)]

= α
∑
i

wifi(u) + (1− α)
∑
i

wifi(v)

= αg(u) + (1− α)g(v).

Example 12.3 The function g(x) = |x| is convex. To see this, note that g(x) =

max{x,−x} and that both the function f1(x) = x and f2(x) = −x are convex.

12.1.2 Lipschitzness

The definition of Lipschitzness below is with respect to the Euclidean norm over

Rd. However, it is possible to define Lipschitzness with respect to any norm.

definition 12.6 (Lipschitzness) Let C ⊂ Rd. A function f : Rd → Rk is

ρ-Lipschitz over C if for every w1,w2 ∈ C we have that ‖f(w1) − f(w2)‖ ≤
ρ ‖w1 −w2‖.

12.1 Convexity, Lipschitzness, and Smoothness 161

Intuitively, a Lipschitz function cannot change too fast. Note that if f : R→ R
is differentiable, then by the mean value theorem we have

f(w1)− f(w2) = f ′(u)(w1 − w2) ,

where u is some point between w1 and w2. It follows that if the derivative of f

is everywhere bounded (in absolute value) by ρ, then the function is ρ-Lipschitz.

Example 12.4

• The function f(x) = |x| is 1-Lipschitz over R. This follows from the triangle

inequality: For every x1, x2,

|x1| − |x2| = |x1 − x2 + x2| − |x2| ≤ |x1 − x2|+ |x2| − |x2| = |x1 − x2|.

Since this holds for both x1, x2 and x2, x1, we obtain that ||x1| − |x2|| ≤
|x1 − x2|.

• The function f(x) = log(1+exp(x)) is 1-Lipschitz over R. To see this, observe

that

|f ′(x)| =
∣∣∣∣ exp(x)

1 + exp(x)

∣∣∣∣ =

∣∣∣∣ 1

exp(−x) + 1

∣∣∣∣ ≤ 1.

• The function f(x) = x2 is not ρ-Lipschitz over R for any ρ. To see this, take

x1 = 0 and x2 = 1 + ρ, then

f(x2)− f(x1) = (1 + ρ)2 > ρ(1 + ρ) = ρ|x2 − x1|.

However, this function is ρ-Lipschitz over the set C = {x : |x| ≤ ρ/2}.
Indeed, for any x1, x2 ∈ C we have

|x2
1 − x2

2| = |x1 + x2| |x1 − x2| ≤ 2(ρ/2) |x1 − x2| = ρ|x1 − x2|.

• The linear function f : Rd → R defined by f(w) = 〈v,w〉 + b where v ∈ Rd
is ‖v‖-Lipschitz. Indeed, using Cauchy-Schwartz inequality,

|f(w1)− f(w2)| = |〈v,w1 −w2〉| ≤ ‖v‖ ‖w1 −w2‖.

The following claim shows that composition of Lipschitz functions preserves

Lipschitzness.

claim 12.7 Let f(x) = g1(g2(x)), where g1 is ρ1-Lipschitz and g2 is ρ2-

Lipschitz. Then, f is (ρ1ρ2)-Lipschitz. In particular, if g2 is the linear function,

g2(x) = 〈v,x〉+ b, for some v ∈ Rd, b ∈ R, then f is (ρ1 ‖v‖)-Lipschitz.

Proof

|f(w1)− f(w2)| = |g1(g2(w1))− g1(g2(w2))|
≤ ρ1‖g2(w1)− g2(w2)‖
≤ ρ1 ρ2 ‖w1 −w2‖.

162 Convex Learning Problems

12.1.3 Smoothness

The definition of a smooth function relies on the notion of gradient. Recall that

the gradient of a differentiable function f : Rd → R at w, denoted ∇f(w), is the

vector of partial derivatives of f , namely, ∇f(w) =
(
∂f(w)
∂w1

, . . . , ∂f(w)
∂wd

)
.

definition 12.8 (Smoothness) A differentiable function f : Rd → R is β-

smooth if its gradient is β-Lipschitz; namely, for all v,w we have ‖∇f(v) −
∇f(w)‖ ≤ β‖v −w‖.

It is possible to show that smoothness implies that for all v,w we have

f(v) ≤ f(w) + 〈∇f(w),v −w〉+
β

2
‖v −w‖2 . (12.5)

Recall that convexity of f implies that f(v) ≥ f(w)+〈∇f(w),v−w〉. Therefore,

when a function is both convex and smooth, we have both upper and lower

bounds on the difference between the function and its first order approximation.

Setting v = w − 1
β∇f(w) in the right-hand side of Equation (12.5) and rear-

ranging terms, we obtain

1

2β
‖∇f(w)‖2 ≤ f(w)− f(v).

If we further assume that f(v) ≥ 0 for all v we conclude that smoothness implies

the following:

‖∇f(w)‖2 ≤ 2βf(w) . (12.6)

A function that satisfies this property is also called a self-bounded function.

Example 12.5

• The function f(x) = x2 is 2-smooth. This follows directly from the fact that

f ′(x) = 2x. Note that for this particular function Equation (12.5) and

Equation (12.6) hold with equality.

• The function f(x) = log(1 + exp(x)) is (1/4)-smooth. Indeed, since f ′(x) =
1

1+exp(−x) we have that

|f ′′(x)| = exp(−x)

(1 + exp(−x))2
=

1

(1 + exp(−x))(1 + exp(x))
≤ 1/4.

Hence, f ′ is (1/4)-Lipschitz. Since this function is nonnegative, Equa-

tion (12.6) holds as well.

The following claim shows that a composition of a smooth scalar function over

a linear function preserves smoothness.

claim 12.9 Let f(w) = g(〈w,x〉+b), where g : R→ R is a β-smooth function,

x ∈ Rd, and b ∈ R. Then, f is (β ‖x‖2)-smooth.

12.2 Convex Learning Problems 163

Proof By the chain rule we have that ∇f(w) = g′(〈w,x〉+ b)x, where g′ is the

derivative of g. Using the smoothness of g and the Cauchy-Schwartz inequality

we therefore obtain

f(v) = g(〈v,x〉+ b)

≤ g(〈w,x〉+ b) + g′(〈w,x〉+ b)〈v −w,x〉+
β

2
(〈v −w,x〉)2

≤ g(〈w,x〉+ b) + g′(〈w,x〉+ b)〈v −w,x〉+
β

2
(‖v −w‖ ‖x‖)2

= f(w) + 〈∇f(w),v −w〉+
β‖x‖2

2
‖v −w‖2.

Example 12.6

• For any x ∈ Rd and y ∈ R, let f(w) = (〈w,x〉 − y)2. Then, f is (2‖x‖2)-

smooth.

• For any x ∈ Rd and y ∈ {±1}, let f(w) = log(1 + exp(−y〈w,x〉)). Then, f is

(‖x‖2/4)-smooth.

12.2 Convex Learning Problems

Recall that in our general definition of learning (Definition 3.4 in Chapter 3), we

have a hypothesis class H, a set of examples Z, and a loss function ` : H×Z →
R+. So far in the book we have mainly thought of Z as being the product of an

instance space and a target space, Z = X×Y, andH being a set of functions from

X to Y. However, H can be an arbitrary set. Indeed, throughout this chapter,

we consider hypothesis classes H that are subsets of the Euclidean space Rd.
That is, every hypothesis is some real-valued vector. We shall, therefore, denote

a hypothesis in H by w. Now we can finally define convex learning problems:

definition 12.10 (Convex Learning Problem) A learning problem, (H, Z, `),
is called convex if the hypothesis class H is a convex set and for all z ∈ Z, the

loss function, `(·, z), is a convex function (where, for any z, `(·, z) denotes the

function f : H → R defined by f(w) = `(w, z)).

Example 12.7 (Linear Regression with the Squared Loss) Recall that linear

regression is a tool for modeling the relationship between some “explanatory”

variables and some real valued outcome (see Chapter 9). The domain set X
is a subset of Rd, for some d, and the label set Y is the set of real numbers.

We would like to learn a linear function h : Rd → R that best approximates

the relationship between our variables. In Chapter 9 we defined the hypothesis

class as the set of homogenous linear functions, H = {x 7→ 〈w,x〉 : w ∈ Rd},
and used the squared loss function, `(h, (x, y)) = (h(x) − y)2. However, we can

equivalently model the learning problem as a convex learning problem as follows.

164 Convex Learning Problems

Each linear function is parameterized by a vector w ∈ Rd. Hence, we can define

H to be the set of all such parameters, namely, H = Rd. The set of examples is

Z = X×Y = Rd×R = Rd+1, and the loss function is `(w, (x, y)) = (〈w,x〉−y)2.

Clearly, the set H is a convex set. The loss function is also convex with respect

to its first argument (see Example 12.2).

lemma 12.11 If ` is a convex loss function and the class H is convex, then the

ERMH problem, of minimizing the empirical loss over H, is a convex optimiza-

tion problem (that is, a problem of minimizing a convex function over a convex

set).

Proof Recall that the ERMH problem is defined by

ERMH(S) = argmin
w∈H

LS(w).

Since, for a sample S = z1, . . . , zm, for every w, LS(w) = 1
m

∑m
i=1 `(w, zi),

Claim 12.5 implies that LS(w) is a convex function. Therefore, the ERM rule

is a problem of minimizing a convex function subject to the constraint that the

solution should be in a convex set.

Under mild conditions, such problems can be solved efficiently using generic

optimization algorithms. In particular, in Chapter 14 we will present a very

simple algorithm for minimizing convex functions.

12.2.1 Learnability of Convex Learning Problems

We have argued that for many cases, implementing the ERM rule for convex

learning problems can be done efficiently. But is convexity a sufficient condition

for the learnability of a problem?

To make the quesion more specific: In VC theory, we saw that halfspaces in

d-dimension are learnable (perhaps inefficiently). We also argued in Chapter 9

using the “discretization trick” that if the problem is of d parameters, it is

learnable with a sample complexity being a function of d. That is, for a constant

d, the problem should be learnable. So, maybe all convex learning problems over

Rd, are learnable?

Example 12.8 later shows that the answer is negative, even when d is low. Not

all convex learning problems over Rd are learnable. There is no contradiction

to VC theory since VC theory only deals with binary classification while here

we consider a wide family of problems. There is also no contradiction to the

“discretization trick” as there we assumed that the loss function is bounded and

also assumed that a representation of each parameter using a finite number of

bits suffices. As we will show later, under some additional restricting conditions

that hold in many practical scenarios, convex problems are learnable.

Example 12.8 (Nonlearnability of Linear Regression Even If d = 1) Let H = R,

and the loss be the squared loss: `(w, (x, y)) = (wx− y)2 (we’re referring to the

12.2 Convex Learning Problems 165

homogenous case). Let A be any deterministic algorithm.1 Assume, by way of

contradiction, that A is a successful PAC learner for this problem. That is, there

exists a function m(·, ·), such that for every distribution D and for every ε, δ if

A receives a training set of size m ≥ m(ε, δ), it should output, with probability

of at least 1− δ, a hypothesis ŵ = A(S), such that LD(ŵ)−minw LD(w) ≤ ε.
Choose ε = 1/100, δ = 1/2, let m ≥ m(ε, δ), and set µ = log(100/99)

2m . We will

define two distributions, and will show that A is likely to fail on at least one

of them. The first distribution, D1, is supported on two examples, z1 = (1, 0)

and z2 = (µ,−1), where the probability mass of the first example is µ while the

probability mass of the second example is 1− µ. The second distribution, D2, is

supported entirely on z2.

Observe that for both distributions, the probability that all examples of the

training set will be of the second type is at least 99%. This is trivially true for

D2, whereas for D1, the probability of this event is

(1− µ)m ≥ e−2µm = 0.99.

Since we assume that A is a deterministic algorithm, upon receiving a training

set of m examples, each of which is (µ,−1), the algorithm will output some ŵ.

Now, if ŵ < −1/(2µ), we will set the distribution to be D1. Hence,

LD1(ŵ) ≥ µ(ŵ)2 ≥ 1/(4µ).

However,

min
w
LD1

(w) ≤ LD1
(0) = (1− µ).

It follows that

LD1(ŵ)−min
w
LD1(w) ≥ 1

4µ
− (1− µ) > ε.

Therefore, such algorithm A fails on D1. On the other hand, if ŵ ≥ −1/(2µ)

then we’ll set the distribution to be D2. Then we have that LD2
(ŵ) ≥ 1/4 while

minw LD2(w) = 0, so A fails on D2. In summary, we have shown that for every

A there exists a distribution on which A fails, which implies that the problem is

not PAC learnable.

A possible solution to this problem is to add another constraint on the hypoth-

esis class. In addition to the convexity requirement, we require that H will be

bounded ; namely, we assume that for some predefined scalar B, every hypothesis

w ∈ H satisfies ‖w‖ ≤ B.

Boundedness and convexity alone are still not sufficient for ensuring that the

problem is learnable, as the following example demonstrates.

Example 12.9 As in Example 12.8, consider a regression problem with the

squared loss. However, this time let H = {w : |w| ≤ 1} ⊂ R be a bounded

1 Namely, given S the output of A is determined. This requirement is for the sake of

simplicity. A slightly more involved argument will show that nondeterministic algorithms

will also fail to learn the problem.

166 Convex Learning Problems

hypothesis class. It is easy to verify that H is convex. The argument will be

the same as in Example 12.8, except that now the two distributions, D1,D2 will

be supported on z1 = (1/µ, 0) and z2 = (1,−1). If the algorithm A returns

ŵ < −1/2 upon receiving m examples of the second type, then we will set the

distribution to be D1 and have that

LD1
(ŵ)−min

w
LD1

(w) ≥ µ(ŵ/µ)2 − LD1
(0) ≥ 1/(4µ)− (1− µ) > ε.

Similarly, if ŵ ≥ −1/2 we will set the distribution to be D2 and have that

LD2(ŵ)−min
w
LD2(w) ≥ (−1/2 + 1)2 − 0 > ε.

This example shows that we need additional assumptions on the learning

problem, and this time the solution is in Lipschitzness or smoothness of the

loss function. This motivates a definition of two families of learning problems,

convex-Lipschitz-bounded and convex-smooth-bounded, which are defined later.

12.2.2 Convex-Lipschitz/Smooth-Bounded Learning Problems

definition 12.12 (Convex-Lipschitz-Bounded Learning Problem) A learning

problem, (H, Z, `), is called Convex-Lipschitz-Bounded, with parameters ρ,B if

the following holds:

• The hypothesis class H is a convex set and for all w ∈ H we have ‖w‖ ≤ B.

• For all z ∈ Z, the loss function, `(·, z), is a convex and ρ-Lipschitz function.

Example 12.10 Let X = {x ∈ Rd : ‖x‖ ≤ ρ} and Y = R. Let H = {w ∈ Rd :

‖w‖ ≤ B} and let the loss function be `(w, (x, y)) = |〈w,x〉 − y|. This corre-

sponds to a regression problem with the absolute-value loss, where we assume

that the instances are in a ball of radius ρ and we restrict the hypotheses to be

homogenous linear functions defined by a vector w whose norm is bounded by

B. Then, the resulting problem is Convex-Lipschitz-Bounded with parameters

ρ,B.

definition 12.13 (Convex-Smooth-Bounded Learning Problem) A learning

problem, (H, Z, `), is called Convex-Smooth-Bounded, with parameters β,B if

the following holds:

• The hypothesis class H is a convex set and for all w ∈ H we have ‖w‖ ≤ B.

• For all z ∈ Z, the loss function, `(·, z), is a convex, nonnegative, and β-smooth

function.

Note that we also required that the loss function is nonnegative. This is needed

to ensure that the loss function is self-bounded, as described in the previous

section.

12.3 Surrogate Loss Functions 167

Example 12.11 Let X = {x ∈ Rd : ‖x‖ ≤ β/2} and Y = R. Let H = {w ∈
Rd : ‖w‖ ≤ B} and let the loss function be `(w, (x, y)) = (〈w,x〉 − y)2. This

corresponds to a regression problem with the squared loss, where we assume that

the instances are in a ball of radius β/2 and we restrict the hypotheses to be

homogenous linear functions defined by a vector w whose norm is bounded by B.

Then, the resulting problem is Convex-Smooth-Bounded with parameters β,B.

We claim that these two families of learning problems are learnable. That is,

the properties of convexity, boundedness, and Lipschitzness or smoothness of the

loss function are sufficient for learnability. We will prove this claim in the next

chapters by introducing algorithms that learn these problems successfully.

12.3 Surrogate Loss Functions

As mentioned, and as we will see in the next chapters, convex problems can

be learned effficiently. However, in many cases, the natural loss function is not

convex and, in particular, implementing the ERM rule is hard.

As an example, consider the problem of learning the hypothesis class of half-

spaces with respect to the 0− 1 loss. That is,

`0−1(w, (x, y)) = 1[y 6=sign(〈w,x〉)] = 1[y〈w,x〉≤0].

This loss function is not convex with respect to w and indeed, when trying to

minimize the empirical risk with respect to this loss function we might encounter

local minima (see Exercise 1). Furthermore, as discussed in Chapter 8, solving

the ERM problem with respect to the 0−1 loss in the unrealizable case is known

to be NP-hard.

To circumvent the hardness result, one popular approach is to upper bound

the nonconvex loss function by a convex surrogate loss function. As its name

indicates, the requirements from a convex surrogate loss are as follows:

1. It should be convex.

2. It should upper bound the original loss.

For example, in the context of learning halfspaces, we can define the so-called

hinge loss as a convex surrogate for the 0− 1 loss, as follows:

`hinge(w, (x, y))
def
= max{0, 1− y〈w,x〉}.

Clearly, for all w and all (x, y), `0−1(w, (x, y)) ≤ `hinge(w, (x, y)). In addition,

the convexity of the hinge loss follows directly from Claim 12.5. Hence, the hinge

loss satisfies the requirements of a convex surrogate loss function for the zero-one

loss. An illustration of the functions `0−1 and `hinge is given in the following.

168 Convex Learning Problems

y〈w,x〉

`hinge

`0−1

1

1

Once we have defined the surrogate convex loss, we can learn the problem with

respect to it. The generalization requirement from a hinge loss learner will have

the form

Lhinge
D (A(S)) ≤ min

w∈H
Lhinge
D (w) + ε,

where Lhinge
D (w) = E(x,y)∼D[`hinge(w, (x, y))]. Using the surrogate property, we

can lower bound the left-hand side by L0−1
D (A(S)), which yields

L0−1
D (A(S)) ≤ min

w∈H
Lhinge
D (w) + ε.

We can further rewrite the upper bound as follows:

L0−1
D (A(S)) ≤ min

w∈H
L0−1
D (w) +

(
min
w∈H

Lhinge
D (w)− min

w∈H
L0−1
D (w)

)
+ ε.

That is, the 0−1 error of the learned predictor is upper bounded by three terms:

• Approximation error : This is the term minw∈H L
0−1
D (w), which measures how

well the hypothesis class performs on the distribution. We already elabo-

rated on this error term in Chapter 5.

• Estimation error : This is the error that results from the fact that we only

receive a training set and do not observe the distribution D. We already

elaborated on this error term in Chapter 5.

• Optimization error : This is the term
(

minw∈H L
hinge
D (w)−minw∈H L

0−1
D (w)

)
that measures the difference between the approximation error with respect

to the surrogate loss and the approximation error with respect to the orig-

inal loss. The optimization error is a result of our inability to minimize the

training loss with respect to the original loss. The size of this error depends

on the specific distribution of the data and on the specific surrogate loss

we are using.

12.4 Summary

We introduced two families of learning problems: convex-Lipschitz-bounded and

convex-smooth-bounded. In the next two chapters we will describe two generic

12.5 Bibliographic Remarks 169

learning algorithms for these families. We also introduced the notion of convex

surrogate loss function, which enables us also to utilize the convex machinery for

nonconvex problems.

12.5 Bibliographic Remarks

There are several excellent books on convex analysis and optimization (Boyd &

Vandenberghe 2004, Borwein & Lewis 2006, Bertsekas 1999, Hiriart-Urruty &

Lemaréchal 1996). Regarding learning problems, the family of convex-Lipschitz-

bounded problems was first studied by Zinkevich (2003) in the context of online

learning and by Shalev-Shwartz, Shamir, Sridharan & Srebro (2009) in the con-

text of PAC learning.

12.6 Exercises

1. Construct an example showing that the 0−1 loss function may suffer from

local minima; namely, construct a training sample S ∈ (X ×{±1})m (say, for

X = R2), for which there exist a vector w and some ε > 0 such that

1. For any w′ such that ‖w − w′‖ ≤ ε we have LS(w) ≤ LS(w′) (where the

loss here is the 0−1 loss). This means that w is a local minimum of LS .

2. There exists some w∗ such that LS(w∗) < LS(w). This means that w is

not a global minimum of LS .

2. Consider the learning problem of logistic regression: Let H = X = {x ∈
Rd : ‖x‖ ≤ B}, for some scalar B > 0, let Y = {±1}, and let the loss

function ` be defined as `(w, (x, y)) = log(1 + exp(−y〈w,x〉)). Show that

the resulting learning problem is both convex-Lipschitz-bounded and convex-

smooth-bounded. Specify the parameters of Lipschitzness and smoothness.

3. Consider the problem of learning halfspaces with the hinge loss. We limit our

domain to the Euclidean ball with radius R. That is, X = {x : ‖x‖2 ≤ R}.
The label set is Y = {±1} and the loss function ` is defined by `(w, (x, y)) =

max{0, 1− y〈w,x〉}. We already know that the loss function is convex. Show

that it is R-Lipschitz.

4. (*) Convex-Lipschitz-Boundedness Is Not Sufficient for Computa-

tional Efficiency: In the next chapter we show that from the statistical

perspective, all convex-Lipschitz-bounded problems are learnable (in the ag-

nostic PAC model). However, our main motivation to learn such problems

resulted from the computational perspective – convex optimization is often

efficiently solvable. Yet the goal of this exercise is to show that convexity

alone is not sufficient for efficiency. We show that even for the case d = 1,

there is a convex-Lipschitz-bounded problem which cannot be learned by any

computable learner.

Let the hypothesis class be H = [0, 1] and let the example domain, Z, be

170 Convex Learning Problems

the set of all Turing machines. Define the loss function as follows. For every

Turing machine T ∈ Z, let `(0, T) = 1 if T halts on the input 0 and `(0, T) = 0

if T doesn’t halt on the input 0. Similarly, let `(1, T) = 0 if T halts on the

input 0 and `(1, T) = 1 if T doesn’t halt on the input 0. Finally, for h ∈ (0, 1),

let `(h, T) = h`(0, T) + (1− h)`(1, T).

1. Show that the resulting learning problem is convex-Lipschitz-bounded.

2. Show that no computable algorithm can learn the problem.

13 Regularization and Stability

In the previous chapter we introduced the families of convex-Lipschitz-bounded

and convex-smooth-bounded learning problems. In this section we show that all

learning problems in these two families are learnable. For some learning problems

of this type it is possible to show that uniform convergence holds; hence they

are learnable using the ERM rule. However, this is not true for all learning

problems of this type. Yet, we will introduce another learning rule and will show

that it learns all convex-Lipschitz-bounded and convex-smooth-bounded learning

problems.

The new learning paradigm we introduce in this chapter is called Regularized

Loss Minimization, or RLM for short. In RLM we minimize the sum of the em-

pirical risk and a regularization function. Intuitively, the regularization function

measures the complexity of hypotheses. Indeed, one interpretation of the reg-

ularization function is the structural risk minimization paradigm we discussed

in Chapter 7. Another view of regularization is as a stabilizer of the learning

algorithm. An algorithm is considered stable if a slight change of its input does

not change its output much. We will formally define the notion of stability (what

we mean by “slight change of input” and by “does not change much the out-

put”) and prove its close relation to learnability. Finally, we will show that using

the squared `2 norm as a regularization function stabilizes all convex-Lipschitz or

convex-smooth learning problems. Hence, RLM can be used as a general learning

rule for these families of learning problems.

13.1 Regularized Loss Minimization

Regularized Loss Minimization (RLM) is a learning rule in which we jointly min-

imize the empirical risk and a regularization function. Formally, a regularization

function is a mapping R : Rd → R, and the regularized loss minimization rule

outputs a hypothesis in

argmin
w

(LS(w) +R(w)) . (13.1)

Regularized loss minimization shares similarities with minimum description length

algorithms and structural risk minimization (see Chapter 7). Intuitively, the

“complexity” of hypotheses is measured by the value of the regularization func-

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

172 Regularization and Stability

tion, and the algorithm balances between low empirical risk and “simpler,” or

“less complex,” hypotheses.

There are many possible regularization functions one can use, reflecting some

prior belief about the problem (similarly to the description language in Minimum

Description Length). Throughout this section we will focus on one of the most

simple regularization functions: R(w) = λ‖w‖2, where λ > 0 is a scalar and the

norm is the `2 norm, ‖w‖ =
√∑d

i=1 w
2
i . This yields the learning rule:

A(S) = argmin
w

(
LS(w) + λ‖w‖2

)
. (13.2)

This type of regularization function is often called Tikhonov regularization.

As mentioned before, one interpretation of Equation (13.2) is using structural

risk minimization, where the norm of w is a measure of its “complexity.” Recall

that in the previous chapter we introduced the notion of bounded hypothesis

classes. Therefore, we can define a sequence of hypothesis classes, H1 ⊂ H2 ⊂
H3 . . ., where Hi = {w : ‖w‖2 ≤ i}. If the sample complexity of each Hi depends

on i then the RLM rule is similar to the SRM rule for this sequence of nested

classes.

A different interpretation of regularization is as a stabilizer. In the next section

we define the notion of stability and prove that stable learning rules do not

overfit. But first, let us demonstrate the RLM rule for linear regression with the

squared loss.

13.1.1 Ridge Regression

Applying the RLM rule with Tikhonov regularization to linear regression with

the squared loss, we obtain the following learning rule:

argmin
w∈Rd

(
λ‖w‖22 +

1

m

m∑
i=1

1

2
(〈w,xi〉 − yi)2

)
. (13.3)

Performing linear regression using Equation (13.3) is called ridge regression.

To solve Equation (13.3) we compare the gradient of the objective to zero and

obtain the set of linear equations

(2λmI +A)w = b,

where I is the identity matrix and A,b are as defined in Equation (9.6), namely,

A =

(
m∑
i=1

xi x
>
i

)
and b =

m∑
i=1

yixi . (13.4)

Since A is a positive semidefinite matrix, the matrix 2λmI +A has all its eigen-

values bounded below by 2λm. Hence, this matrix is invertible and the solution

to ridge regression becomes

w = (2λmI +A)−1 b. (13.5)

13.2 Stable Rules Do Not Overfit 173

In the next section we formally show how regularization stabilizes the algo-

rithm and prevents overfitting. In particular, the analysis presented in the next

sections (particularly, Corollary 13.11) will yield:

theorem 13.1 Let D be a distribution over X × [−1, 1], where X = {x ∈
Rd : ‖x‖ ≤ 1}. Let H = {w ∈ Rd : ‖w‖ ≤ B}. For any ε ∈ (0, 1), let m ≥
150B2/ε2. Then, applying the ridge regression algorithm with parameter λ =

ε/(3B2) satisfies

E
S∼Dm

[LD(A(S))] ≤ min
w∈H

LD(w) + ε.

Remark 13.1 The preceding theorem tells us how many examples are needed

to guarantee that the expected value of the risk of the learned predictor will be

bounded by the approximation error of the class plus ε. In the usual definition

of agnostic PAC learning we require that the risk of the learned predictor will

be bounded with probability of at least 1 − δ. In Exercise 1 we show how an

algorithm with a bounded expected risk can be used to construct an agnostic

PAC learner.

13.2 Stable Rules Do Not Overfit

Intuitively, a learning algorithm is stable if a small change of the input to the

algorithm does not change the output of the algorithm much. Of course, there

are many ways to define what we mean by “a small change of the input” and

what we mean by “does not change the output much”. In this section we define

a specific notion of stability and prove that under this definition, stable rules do

not overfit.

Let A be a learning algorithm, let S = (z1, . . . , zm) be a training set of m

examples, and let A(S) denote the output of A. The algorithm A suffers from

overfitting if the difference between the true risk of its output, LD(A(S)), and the

empirical risk of its output, LS(A(S)), is large. As mentioned in Remark 13.1,

throughout this chapter we focus on the expectation (with respect to the choice

of S) of this quantity, namely, ES [LD(A(S))− LS(A(S))].

We next define the notion of stability. Given the training set S and an ad-

ditional example z′, let S(i) be the training set obtained by replacing the i’th

example of S with z′; namely, S(i) = (z1, . . . , zi−1, z
′, zi+1, . . . , zm). In our defi-

nition of stability, “a small change of the input” means that we feed A with S(i)

instead of with S. That is, we only replace one training example. We measure

the effect of this small change of the input on the output of A, by comparing

the loss of the hypothesis A(S) on zi to the loss of the hypothesis A(S(i)) on zi.

Intuitively, a good learning algorithm will have `(A(S(i)), zi) − `(A(S), zi) ≥ 0,

since in the first term the learning algorithm does not observe the example zi
while in the second term zi is indeed observed. If the preceding difference is very

large we suspect that the learning algorithm might overfit. This is because the

174 Regularization and Stability

learning algorithm drastically changes its prediction on zi if it observes it in the

training set. This is formalized in the following theorem.

theorem 13.2 Let D be a distribution. Let S = (z1, . . . , zm) be an i.i.d. se-

quence of examples and let z′ be another i.i.d. example. Let U(m) be the uniform

distribution over [m]. Then, for any learning algorithm,

E
S∼Dm

[LD(A(S))− LS(A(S))] = E
(S,z′)∼Dm+1,i∼U(m)

[`(A(S(i), zi))− `(A(S), zi)].

(13.6)

Proof Since S and z′ are both drawn i.i.d. from D, we have that for every i,

E
S

[LD(A(S))] = E
S,z′

[`(A(S), z′)] = E
S,z′

[`(A(S(i)), zi)].

On the other hand, we can write

E
S

[LS(A(S))] = E
S,i

[`(A(S), zi)].

Combining the two equations we conclude our proof.

When the right-hand side of Equation (13.6) is small, we say that A is a stable

algorithm – changing a single example in the training set does not lead to a

significant change. Formally,

definition 13.3 (On-Average-Replace-One-Stable) Let ε : N→ R be a mono-

tonically decreasing function. We say that a learning algorithm A is on-average-

replace-one-stable with rate ε(m) if for every distribution D

E
(S,z′)∼Dm+1,i∼U(m)

[`(A(S(i), zi))− `(A(S), zi)] ≤ ε(m).

Theorem 13.2 tells us that a learning algorithm does not overfit if and only

if it is on-average-replace-one-stable. Of course, a learning algorithm that does

not overfit is not necessarily a good learning algorithm – take, for example, an

algorithm A that always outputs the same hypothesis. A useful algorithm should

find a hypothesis that on one hand fits the training set (i.e., has a low empirical

risk) and on the other hand does not overfit. Or, in light of Theorem 13.2, the

algorithm should both fit the training set and at the same time be stable. As we

shall see, the parameter λ of the RLM rule balances between fitting the training

set and being stable.

13.3 Tikhonov Regularization as a Stabilizer

In the previous section we saw that stable rules do not overfit. In this section we

show that applying the RLM rule with Tikhonov regularization, λ‖w‖2, leads to

a stable algorithm. We will assume that the loss function is convex and that it

is either Lipschitz or smooth.

The main property of the Tikhonov regularization that we rely on is that it

makes the objective of RLM strongly convex, as defined in the following.

13.3 Tikhonov Regularization as a Stabilizer 175

definition 13.4 (Strongly Convex Functions) A function f is λ-strongly con-

vex if for all w, u and α ∈ (0, 1) we have

f(αw + (1− α)u) ≤ αf(w) + (1− α)f(u)− λ

2
α(1− α)‖w − u‖2.

Clearly, every convex function is 0-strongly convex. An illustration of strong

convexity is given in the following figure.

f(w)

f(u)

w

αw + (1− α)u

u

≥ λ
2 α(1− α)‖u−w‖2

The following lemma implies that the objective of RLM is (2λ)-strongly con-

vex. In addition, it underscores an important property of strong convexity.

lemma 13.5

1. The function f(w) = λ‖w‖2 is 2λ-strongly convex.

2. If f is λ-strongly convex and g is convex, then f + g is λ-strongly convex.

3. If f is λ-strongly convex and u is a minimizer of f , then, for any w,

f(w)− f(u) ≥ λ

2
‖w − u‖2.

Proof The first two points follow directly from the definition. To prove the last

point, we divide the definition of strong convexity by α and rearrange terms to

get that

f(u + α(w − u))− f(u)

α
≤ f(w)− f(u)− λ

2
(1− α)‖w − u‖2.

Taking the limit α→ 0 we obtain that the right-hand side converges to f(w)−
f(u)− λ

2 ‖w−u‖2. On the other hand, the left-hand side becomes the derivative

of the function g(α) = f(u + α(w − u)) at α = 0. Since u is a minimizer of f ,

it follows that α = 0 is a minimizer of g, and therefore the left-hand side of the

preceding goes to zero in the limit α→ 0, which concludes our proof.

We now turn to prove that RLM is stable. Let S = (z1, . . . , zm) be a training

set, let z′ be an additional example, and let S(i) = (z1, . . . , zi−1, z
′, zi+1, . . . , zm).

Let A be the RLM rule, namely,

A(S) = argmin
w

(
LS(w) + λ‖w‖2

)
.

176 Regularization and Stability

Denote fS(w) = LS(w) +λ‖w‖2, and based on Lemma 13.5 we know that fS is

(2λ)-strongly convex. Relying on part 3 of the lemma, it follows that for any v,

fS(v)− fS(A(S)) ≥ λ‖v −A(S)‖2. (13.7)

On the other hand, for any v and u, and for all i, we have

fS(v)− fS(u) = LS(v) + λ‖v‖2 − (LS(u) + λ‖u‖2) (13.8)

= LS(i)(v) + λ‖v‖2 − (LS(i)(u) + λ‖u‖2)

+
`(v, zi)− `(u, zi)

m
+
`(u, z′)− `(v, z′)

m
.

In particular, choosing v = A(S(i)), u = A(S), and using the fact that v mini-

mizes LS(i)(w) + λ‖w‖2, we obtain that

fS(A(S(i)))−fS(A(S)) ≤ `(A(S(i)), zi)− `(A(S), zi)

m
+
`(A(S), z′)− `(A(S(i)), z′)

m
.

(13.9)

Combining this with Equation (13.7) we obtain that

λ‖A(S(i))−A(S)‖2 ≤ `(A(S(i)), zi)− `(A(S), zi)

m
+
`(A(S), z′)− `(A(S(i)), z′)

m
.

(13.10)

The two subsections that follow continue the stability analysis for either Lip-

schitz or smooth loss functions. For both families of loss functions we show that

RLM is stable and therefore it does not overfit.

13.3.1 Lipschitz Loss

If the loss function, `(·, zi), is ρ-Lipschitz, then by the definition of Lipschitzness,

`(A(S(i)), zi)− `(A(S), zi) ≤ ρ ‖A(S(i))−A(S)‖. (13.11)

Similarly,

`(A(S), z′)− `(A(S(i)), z′) ≤ ρ ‖A(S(i))−A(S)‖.

Plugging these inequalities into Equation (13.10) we obtain

λ‖A(S(i))−A(S)‖2 ≤ 2 ρ ‖A(S(i))−A(S)‖
m

,

which yields

‖A(S(i))−A(S)‖ ≤ 2 ρ

λm
.

Plugging the preceding back into Equation (13.11) we conclude that

`(A(S(i)), zi)− `(A(S), zi) ≤
2 ρ2

λm
.

Since this holds for any S, z′, i we immediately obtain:

13.3 Tikhonov Regularization as a Stabilizer 177

corollary 13.6 Assume that the loss function is convex and ρ-Lipschitz.

Then, the RLM rule with the regularizer λ‖w‖2 is on-average-replace-one-stable

with rate 2 ρ2

λm . It follows (using Theorem 13.2) that

E
S∼Dm

[LD(A(S))− LS(A(S))] ≤ 2 ρ2

λm
.

13.3.2 Smooth and Nonnegative Loss

If the loss is β-smooth and nonnegative then it is also self-bounded (see Sec-

tion 12.1):

‖∇f(w)‖2 ≤ 2βf(w). (13.12)

We further assume that λ ≥ 2β
m , or, in other words, that β ≤ λm/2. By the

smoothness assumption we have that

`(A(S(i)), zi)−`(A(S), zi) ≤ 〈∇`(A(S), zi), A(S(i))−A(S)〉+β

2
‖A(S(i))−A(S)‖2 .

(13.13)

Using the Cauchy-Schwartz inequality and Equation (12.6) we further obtain

that

`(A(S(i)), zi)− `(A(S), zi)

≤ ‖∇`(A(S), zi)‖ ‖A(S(i))−A(S)‖+
β

2
‖A(S(i))−A(S)‖2

≤
√

2β`(A(S), zi) ‖A(S(i))−A(S)‖+
β

2
‖A(S(i))−A(S)‖2 .

(13.14)

By a symmetric argument it holds that,

`(A(S), z′)− `(A(S(i)), z′)

≤
√

2β`(A(S(i)), z′) ‖A(S(i))−A(S)‖+
β

2
‖A(S(i))−A(S)‖2 .

Plugging these inequalities into Equation (13.10) and rearranging terms we ob-

tain that

‖A(S(i))−A(S)‖ ≤
√

2β

(λm− β)

(√
`(A(S), zi) +

√
`(A(S(i)), z′)

)
.

Combining the preceding with the assumption β ≤ λm/2 yields

‖A(S(i))−A(S)‖ ≤
√

8β

λm

(√
`(A(S), zi) +

√
`(A(S(i)), z′)

)
.

178 Regularization and Stability

Combining the preceding with Equation (13.14) and again using the assumption

β ≤ λm/2 yield

`(A(S(i)), zi)− `(A(S), zi)

≤
√

2β`(A(S), zi) ‖A(S(i))−A(S)‖+
β

2
‖A(S(i))−A(S)‖2

≤
(

4β

λm
+

8β2

(λm)2

)(√
`(A(S), zi) +

√
`(A(S(i)), z′)

)2

≤ 8β

λm

(√
`(A(S), zi) +

√
`(A(S(i)), z′)

)2

≤ 24β

λm

(
`(A(S), zi) + `(A(S(i)), z′)

)
,

where in the last step we used the inequality (a+b)2 ≤ 3(a2+b2). Taking expecta-

tion with respect to S, z′, i and noting that E[`(A(S), zi)] = E[`(A(S(i)), z′)] =

E[LS(A(S))], we conclude that:

corollary 13.7 Assume that the loss function is β-smooth and nonnegative.

Then, the RLM rule with the regularizer λ‖w‖2, where λ ≥ 2β
m , satisfies

E
[
`(A(S(i)), zi)− `(A(S), zi)

]
≤ 48β

λm
E[LS(A(S))].

Note that if for all z we have `(0, z) ≤ C, for some scalar C > 0, then for

every S,

LS(A(S)) ≤ LS(A(S)) + λ‖A(S)‖2 ≤ LS(0) + λ‖0‖2 = LS(0) ≤ C.

Hence, Corollary 13.7 also implies that

E
[
`(A(S(i)), zi)− `(A(S), zi)

]
≤ 48β C

λm
.

13.4 Controlling the Fitting-Stability Tradeoff

We can rewrite the expected risk of a learning algorithm as

E
S

[LD(A(S))] = E
S

[LS(A(S))] + E
S

[LD(A(S))− LS(A(S))]. (13.15)

The first term reflects how well A(S) fits the training set while the second term

reflects the difference between the true and empirical risks of A(S). As we have

shown in Theorem 13.2, the second term is equivalent to the stability of A. Since

our goal is to minimize the risk of the algorithm, we need that the sum of both

terms will be small.

In the previous section we have bounded the stability term. We have shown

that the stability term decreases as the regularization parameter, λ, increases.

On the other hand, the empirical risk increases with λ. We therefore face a

13.4 Controlling the Fitting-Stability Tradeoff 179

tradeoff between fitting and overfitting. This tradeoff is quite similar to the bias-

complexity tradeoff we discussed previously in the book.

We now derive bounds on the empirical risk term for the RLM rule. Recall

that the RLM rule is defined as A(S) = argminw

(
LS(w) + λ‖w‖2

)
. Fix some

arbitrary vector w∗. We have

LS(A(S)) ≤ LS(A(S)) + λ‖A(S)‖2 ≤ LS(w∗) + λ‖w∗‖2.

Taking expectation of both sides with respect to S and noting that ES [LS(w∗)] =

LD(w∗), we obtain that

E
S

[LS(A(S))] ≤ LD(w∗) + λ‖w∗‖2. (13.16)

Plugging this into Equation (13.15) we obtain

E
S

[LD(A(S))] ≤ LD(w∗) + λ‖w∗‖2 + E
S

[LD(A(S))− LS(A(S))].

Combining the preceding with Corollary 13.6 we conclude:

corollary 13.8 Assume that the loss function is convex and ρ-Lipschitz.

Then, the RLM rule with the regularization function λ‖w‖2 satisfies

∀w∗, E
S

[LD(A(S))] ≤ LD(w∗) + λ‖w∗‖2 +
2ρ2

λm
.

This bound is often called an oracle inequality – if we think of w∗ as a hy-

pothesis with low risk, the bound tells us how many examples are needed so that

A(S) will be almost as good as w∗, had we known the norm of w∗. In practice,

however, we usually do not know the norm of w∗. We therefore usually tune λ

on the basis of a validation set, as described in Chapter 11.

We can also easily derive a PAC-like guarantee1 from Corollary 13.8 for convex-

Lipschitz-bounded learning problems:

corollary 13.9 Let (H, Z, `) be a convex-Lipschitz-bounded learning problem

with parameters ρ,B. For any training set size m, let λ =
√

2ρ2

B2m . Then, the

RLM rule with the regularization function λ‖w‖2 satisfies

E
S

[LD(A(S))] ≤ min
w∈H

LD(w) + ρB

√
8

m
.

In particular, for every ε > 0, if m ≥ 8ρ2B2

ε2 then for every distribution D,

ES [LD(A(S))] ≤ minw∈H LD(w) + ε.

The preceding corollary holds for Lipschitz loss functions. If instead the loss

function is smooth and nonnegative, then we can combine Equation (13.16) with

Corollary 13.7 to get:

1 Again, the bound below is on the expected risk, but using Exercise 1 it can be used to

derive an agnostic PAC learning guarantee.

180 Regularization and Stability

corollary 13.10 Assume that the loss function is convex, β-smooth, and

nonnegative. Then, the RLM rule with the regularization function λ‖w‖2, for

λ ≥ 2β
m , satisfies the following for all w∗:

E
S

[LD(A(S))] ≤
(

1 +
48β

λm

)
E
S

[LS(A(S))] ≤
(

1 +
48β

λm

)(
LD(w∗) + λ‖w∗‖2

)
.

For example, if we choose λ = 48β
m we obtain from the preceding that the

expected true risk of A(S) is at most twice the expected empirical risk of A(S).

Furthermore, for this value of λ, the expected empirical risk of A(S) is at most

LD(w∗) + 48β
m ‖w

∗‖2.

We can also derive a learnability guarantee for convex-smooth-bounded learn-

ing problems based on Corollary 13.10.

corollary 13.11 Let (H, Z, `) be a convex-smooth-bounded learning problem

with parameters β,B. Assume in addition that `(0, z) ≤ 1 for all z ∈ Z. For any

ε ∈ (0, 1) let m ≥ 150βB2

ε2 and set λ = ε/(3B2). Then, for every distribution D,

E
S

[LD(A(S))] ≤ min
w∈H

LD(w) + ε .

13.5 Summary

We introduced stability and showed that if an algorithm is stable then it does not

overfit. Furthermore, for convex-Lipschitz-bounded or convex-smooth-bounded

problems, the RLM rule with Tikhonov regularization leads to a stable learning

algorithm. We discussed how the regularization parameter, λ, controls the trade-

off between fitting and overfitting. Finally, we have shown that all learning prob-

lems that are from the families of convex-Lipschitz-bounded and convex-smooth-

bounded problems are learnable using the RLM rule. The RLM paradigm is the

basis for many popular learning algorithms, including ridge regression (which we

discussed in this chapter) and support vector machines (which will be discussed

in Chapter 15).

In the next chapter we will present Stochastic Gradient Descent, which gives us

a very practical alternative way to learn convex-Lipschitz-bounded and convex-

smooth-bounded problems and can also be used for efficiently implementing the

RLM rule.

13.6 Bibliographic Remarks

Stability is widely used in many mathematical contexts. For example, the neces-

sity of stability for so-called inverse problems to be well posed was first recognized

by Hadamard (1902). The idea of regularization and its relation to stability be-

came widely known through the works of Tikhonov (1943) and Phillips (1962).

13.7 Exercises 181

In the context of modern learning theory, the use of stability can be traced back

at least to the work of Rogers & Wagner (1978), which noted that the sensitiv-

ity of a learning algorithm with regard to small changes in the sample controls

the variance of the leave-one-out estimate. The authors used this observation to

obtain generalization bounds for the k-nearest neighbor algorithm (see Chap-

ter 19). These results were later extended to other “local” learning algorithms

(see Devroye, Györfi & Lugosi (1996) and references therein). In addition, practi-

cal methods have been developed to introduce stability into learning algorithms,

in particular the Bagging technique introduced by (Breiman 1996).

Over the last decade, stability was studied as a generic condition for learnabil-

ity. See (Kearns & Ron 1999, Bousquet & Elisseeff 2002, Kutin & Niyogi 2002,

Rakhlin, Mukherjee & Poggio 2005, Mukherjee, Niyogi, Poggio & Rifkin 2006).

Our presentation follows the work of Shalev-Shwartz, Shamir, Srebro & Sridha-

ran (2010), who showed that stability is sufficient and necessary for learning.

They have also shown that all convex-Lipschitz-bounded learning problems are

learnable using RLM, even though for some convex-Lipschitz-bounded learning

problems uniform convergence does not hold in a strong sense.

13.7 Exercises

1. From Bounded Expected Risk to Agnostic PAC Learning: Let A be

an algorithm that guarantees the following: If m ≥ mH(ε) then for every

distribution D it holds that

E
S∼Dm

[LD(A(S))] ≤ min
h∈H

LD(h) + ε.

• Show that for every δ ∈ (0, 1), if m ≥ mH(ε δ) then with probability of at

least 1− δ it holds that LD(A(S)) ≤ minh∈H LD(h) + ε.

Hint: Observe that the random variable LD(A(S)) − minh∈H LD(h) is

nonnegative and rely on Markov’s inequality.

• For every δ ∈ (0, 1) let

mH(ε, δ) = mH(ε/2)dlog2(1/δ)e+

⌈
log(4/δ) + log(dlog2(1/δ)e)

ε2

⌉
.

Suggest a procedure that agnostic PAC learns the problem with sample

complexity of mH(ε, δ), assuming that the loss function is bounded by

1.

Hint: Let k = dlog2(1/δ)e. Divide the data into k+1 chunks, where each

of the first k chunks is of size mH(ε/2) examples. Train the first k chunks

using A. On the basis of the previous question argue that the probability

that for all of these chunks we have LD(A(S)) > minh∈H LD(h) + ε is

at most 2−k ≤ δ/2. Finally, use the last chunk as a validation set.

2. Learnability without Uniform Convergence: Let B be the unit ball of

182 Regularization and Stability

Rd, let H = B, let Z = B × {0, 1}d, and let ` : Z × H → R be defined as

follows:

`(w, (x, α)) =

d∑
i=1

αi(xi − wi)2.

This problem corresponds to an unsupervised learning task, meaning that we

do not try to predict the label of x. Instead, what we try to do is to find the

“center of mass” of the distribution over B. However, there is a twist, modeled

by the vectors α. Each example is a pair (x,α), where x is the instance x and

α indicates which features of x are “active” and which are “turned off.” A

hypothesis is a vector w representing the center of mass of the distribution,

and the loss function is the squared Euclidean distance between x and w, but

only with respect to the “active” elements of x.

• Show that this problem is learnable using the RLM rule with a sample

complexity that does not depend on d.

• Consider a distribution D over Z as follows: x is fixed to be some x0, and

each element of α is sampled to be either 1 or 0 with equal probability.

Show that the rate of uniform convergence of this problem grows with

d.

Hint: Let m be a training set size. Show that if d � 2m, then there is

a high probability of sampling a set of examples such that there exists

some j ∈ [d] for which αj = 1 for all the examples in the training set.

Show that such a sample cannot be ε-representative. Conclude that the

sample complexity of uniform convergence must grow with log(d).

• Conclude that if we take d to infinity we obtain a problem that is learnable

but for which the uniform convergence property does not hold. Compare

to the fundamental theorem of statistical learning.

3. Stability and Asymptotic ERM Are Sufficient for Learnability:

We say that a learning rule A is an AERM (Asymptotic Empirical Risk

Minimizer) with rate ε(m) if for every distribution D it holds that

E
S∼Dm

[
LS(A(S))−min

h∈H
LS(h)

]
≤ ε(m).

We say that a learning rule A learns a class H with rate ε(m) if for every

distribution D it holds that

E
S∼Dm

[
LD(A(S))−min

h∈H
LD(h)

]
≤ ε(m).

Prove the following:

theorem 13.12 If a learning algorithm A is on-average-replace-one-stable

with rate ε1(m) and is an AERM with rate ε2(m), then it learns H with rate

ε1(m) + ε2(m).

13.7 Exercises 183

4. Strong Convexity with Respect to General Norms:

Throughout the section we used the `2 norm. In this exercise we generalize

some of the results to general norms. Let ‖·‖ be some arbitrary norm, and let f

be a strongly convex function with respect to this norm (see Definition 13.4).

1. Show that items 2–3 of Lemma 13.5 hold for every norm.

2. (*) Give an example of a norm for which item 1 of Lemma 13.5 does not

hold.

3. Let R(w) be a function that is (2λ)-strongly convex with respect to some

norm ‖ · ‖. Let A be an RLM rule with respect to R, namely,

A(S) = argmin
w

(LS(w) +R(w)) .

Assume that for every z, the loss function `(·, z) is ρ-Lipschitz with respect

to the same norm, namely,

∀z, ∀w,v, `(w, z)− `(v, z) ≤ ρ ‖w − v‖ .

Prove that A is on-average-replace-one-stable with rate 2ρ2

λm .

4. (*) Let q ∈ (1, 2) and consider the `q-norm

‖w‖q =

(
d∑
i=1

|wi|q
)1/q

.

It can be shown (see, for example, Shalev-Shwartz (2007)) that the function

R(w) =
1

2(q − 1)
‖w‖2q

is 1-strongly convex with respect to ‖w‖q. Show that if q = log(d)
log(d)−1 then

R(w) is
(

1
3 log(d)

)
-strongly convex with respect to the `1 norm over Rd.

14 Stochastic Gradient Descent

Recall that the goal of learning is to minimize the risk function, LD(h) =

Ez∼D[`(h, z)]. We cannot directly minimize the risk function since it depends

on the unknown distribution D. So far in the book, we have discussed learning

methods that depend on the empirical risk. That is, we first sample a training

set S and define the empirical risk function LS(h). Then, the learner picks a

hypothesis based on the value of LS(h). For example, the ERM rule tells us to

pick the hypothesis that minimizes LS(h) over the hypothesis class, H. Or, in the

previous chapter, we discussed regularized risk minimization, in which we pick a

hypothesis that jointly minimizes LS(h) and a regularization function over h.

In this chapter we describe and analyze a rather different learning approach,

which is called Stochastic Gradient Descent (SGD). As in Chapter 12 we will

focus on the important family of convex learning problems, and following the

notation in that chapter, we will refer to hypotheses as vectors w that come from

a convex hypothesis class,H. In SGD, we try to minimize the risk function LD(w)

directly using a gradient descent procedure. Gradient descent is an iterative

optimization procedure in which at each step we improve the solution by taking

a step along the negative of the gradient of the function to be minimized at

the current point. Of course, in our case, we are minimizing the risk function,

and since we do not know D we also do not know the gradient of LD(w). SGD

circumvents this problem by allowing the optimization procedure to take a step

along a random direction, as long as the expected value of the direction is the

negative of the gradient. And, as we shall see, finding a random direction whose

expected value corresponds to the gradient is rather simple even though we do

not know the underlying distribution D.

The advantage of SGD, in the context of convex learning problems, over the

regularized risk minimization learning rule is that SGD is an efficient algorithm

that can be implemented in a few lines of code, yet still enjoys the same sample

complexity as the regularized risk minimization rule. The simplicity of SGD also

allows us to use it in situations when it is not possible to apply methods that

are based on the empirical risk, but this is beyond the scope of this book.

We start this chapter with the basic gradient descent algorithm and analyze its

convergence rate for convex-Lipschitz functions. Next, we introduce the notion of

subgradient and show that gradient descent can be applied for nondifferentiable

functions as well. The core of this chapter is Section 14.3, in which we describe

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

14.1 Gradient Descent 185

the Stochastic Gradient Descent algorithm, along with several useful variants.

We show that SGD enjoys an expected convergence rate similar to the rate

of gradient descent. Finally, we turn to the applicability of SGD to learning

problems.

14.1 Gradient Descent

Before we describe the stochastic gradient descent method, we would like to

describe the standard gradient descent approach for minimizing a differentiable

convex function f(w).

The gradient of a differentiable function f : Rd → R at w, denoted ∇f(w),

is the vector of partial derivatives of f , namely, ∇f(w) =
(
∂f(w)
∂w[1] , . . . ,

∂f(w)
∂w[d]

)
.

Gradient descent is an iterative algorithm. We start with an initial value of w

(say, w(1) = 0). Then, at each iteration, we take a step in the direction of the

negative of the gradient at the current point. That is, the update step is

w(t+1) = w(t) − η∇f(w(t)), (14.1)

where η > 0 is a parameter to be discussed later. Intuitively, since the gradi-

ent points in the direction of the greatest rate of increase of f around w(t),

the algorithm makes a small step in the opposite direction, thus decreasing the

value of the function. Eventually, after T iterations, the algorithm outputs the

averaged vector, w̄ = 1
T

∑T
t=1 w(t). The output could also be the last vector,

w(T), or the best performing vector, argmint∈[T] f(w(t)), but taking the average

turns out to be rather useful, especially when we generalize gradient descent to

nondifferentiable functions and to the stochastic case.

Another way to motivate gradient descent is by relying on Taylor approxima-

tion. The gradient of f at w yields the first order Taylor approximation of f

around w by f(u) ≈ f(w) + 〈u −w,∇f(w)〉. When f is convex, this approxi-

mation lower bounds f , that is,

f(u) ≥ f(w) + 〈u−w,∇f(w)〉.

Therefore, for w close to w(t) we have that f(w) ≈ f(w(t))+〈w−w(t),∇f(w(t))〉.
Hence we can minimize the approximation of f(w). However, the approximation

might become loose for w, which is far away from w(t). Therefore, we would like

to minimize jointly the distance between w and w(t) and the approximation of

f around w(t). If the parameter η controls the tradeoff between the two terms,

we obtain the update rule

w(t+1) = argmin
w

1

2
‖w −w(t)‖2 + η

(
f(w(t)) + 〈w −w(t),∇f(w(t))〉

)
.

Solving the preceding by taking the derivative with respect to w and comparing

it to zero yields the same update rule as in Equation (14.1).

186 Stochastic Gradient Descent

Figure 14.1 An illustration of the gradient descent algorithm. The function to be
minimized is 1.25(x1 + 6)2 + (x2 − 8)2.

14.1.1 Analysis of GD for Convex-Lipschitz Functions

To analyze the convergence rate of the GD algorithm, we limit ourselves to

the case of convex-Lipschitz functions (as we have seen, many problems lend

themselves easily to this setting). Let w? be any vector and let B be an upper

bound on ‖w?‖. It is convenient to think of w? as the minimizer of f(w), but

the analysis that follows holds for every w?.

We would like to obtain an upper bound on the suboptimality of our solution

with respect to w?, namely, f(w̄) − f(w?), where w̄ = 1
T

∑T
t=1 w(t). From the

definition of w̄, and using Jensen’s inequality, we have that

f(w̄)− f(w?) = f

(
1
T

T∑
t=1

w(t)

)
− f(w?)

≤ 1

T

T∑
t=1

(
f(w(t))

)
− f(w?)

=
1

T

T∑
t=1

(
f(w(t))− f(w?)

)
. (14.2)

For every t, because of the convexity of f , we have that

f(w(t))− f(w?) ≤ 〈w(t) −w?,∇f(w(t))〉. (14.3)

Combining the preceding we obtain

f(w̄)− f(w?) ≤ 1

T

T∑
t=1

〈w(t) −w?,∇f(w(t))〉.

To bound the right-hand side we rely on the following lemma:

14.1 Gradient Descent 187

lemma 14.1 Let v1, . . . ,vT be an arbitrary sequence of vectors. Any algorithm

with an initialization w(1) = 0 and an update rule of the form

w(t+1) = w(t) − ηvt (14.4)

satisfies

T∑
t=1

〈w(t) −w?,vt〉 ≤
‖w?‖2

2η
+
η

2

T∑
t=1

‖vt‖2. (14.5)

In particular, for every B, ρ > 0, if for all t we have that ‖vt‖ ≤ ρ and if we set

η =
√

B2

ρ2 T , then for every w? with ‖w?‖ ≤ B we have

1

T

T∑
t=1

〈w(t) −w?,vt〉 ≤
B ρ√
T
.

Proof Using algebraic manipulations (completing the square), we obtain:

〈w(t) −w?,vt〉 =
1

η
〈w(t) −w?, ηvt〉

=
1

2η
(−‖w(t) −w? − ηvt‖2 + ‖w(t) −w?‖2 + η2‖vt‖2)

=
1

2η
(−‖w(t+1) −w?‖2 + ‖w(t) −w?‖2) +

η

2
‖vt‖2,

where the last equality follows from the definition of the update rule. Summing

the equality over t, we have

T∑
t=1

〈w(t)−w?,vt〉 =
1

2η

T∑
t=1

(
−‖w(t+1) −w?‖2 + ‖w(t) −w?‖2

)
+
η

2

T∑
t=1

‖vt‖2.

(14.6)

The first sum on the right-hand side is a telescopic sum that collapses to

‖w(1) −w?‖2 − ‖w(T+1) −w?‖2.

Plugging this in Equation (14.6), we have

T∑
t=1

〈w(t) −w?,vt〉 =
1

2η
(‖w(1) −w?‖2 − ‖w(T+1) −w?‖2) +

η

2

T∑
t=1

‖vt‖2

≤ 1

2η
‖w(1) −w?‖2 +

η

2

T∑
t=1

‖vt‖2

=
1

2η
‖w?‖2 +

η

2

T∑
t=1

‖vt‖2,

where the last equality is due to the definition w(1) = 0. This proves the first

part of the lemma (Equation (14.5)). The second part follows by upper bounding

‖w?‖ by B, ‖vt‖ by ρ, dividing by T , and plugging in the value of η.

188 Stochastic Gradient Descent

Lemma 14.1 applies to the GD algorithm with vt = ∇f(w(t)). As we will

show later in Lemma 14.7, if f is ρ-Lipschitz, then ‖∇f(w(t))‖ ≤ ρ. We therefore

satisfy the lemma’s conditions and achieve the following corollary:

corollary 14.2 Let f be a convex, ρ-Lipschitz function, and let w? ∈ argmin{w:‖w‖≤B} f(w).

If we run the GD algorithm on f for T steps with η =
√

B2

ρ2 T , then the output

vector w̄ satisfies

f(w̄)− f(w?) ≤ B ρ√
T
.

Furthermore, for every ε > 0, to achieve f(w̄)− f(w?) ≤ ε, it suffices to run the

GD algorithm for a number of iterations that satisfies

T ≥ B2ρ2

ε2
.

14.2 Subgradients

The GD algorithm requires that the function f be differentiable. We now gener-

alize the discussion beyond differentiable functions. We will show that the GD

algorithm can be applied to nondifferentiable functions by using a so-called sub-

gradient of f(w) at w(t), instead of the gradient.

To motivate the definition of subgradients, recall that for a convex function f ,

the gradient at w defines the slope of a tangent that lies below f , that is,

∀u, f(u) ≥ f(w) + 〈u−w,∇f(w)〉. (14.7)

An illustration is given on the left-hand side of Figure 14.2.

The existence of a tangent that lies below f is an important property of convex

functions, which is in fact an alternative characterization of convexity.

lemma 14.3 Let S be an open convex set. A function f : S → R is convex iff

for every w ∈ S there exists v such that

∀u ∈ S, f(u) ≥ f(w) + 〈u−w,v〉. (14.8)

The proof of this lemma can be found in many convex analysis textbooks (e.g.,

(Borwein & Lewis 2006)). The preceding inequality leads us to the definition of

subgradients.

definition 14.4 (Subgradients) A vector v that satisfies Equation (14.8) is

called a subgradient of f at w. The set of subgradients of f at w is called the

differential set and denoted ∂f(w).

An illustration of subgradients is given on the right-hand side of Figure 14.2.

For scalar functions, a subgradient of a convex function f at w is a slope of a

line that touches f at w and is not above f elsewhere.

14.2 Subgradients 189

f(w)

f(u)

w u

f(
w

) +
〈u
−
w
,∇
f(
w

)〉

Figure 14.2 Left: The right-hand side of Equation (14.7) is the tangent of f at w. For
a convex function, the tangent lower bounds f . Right: Illustration of several
subgradients of a nondifferentiable convex function.

14.2.1 Calculating Subgradients

How do we construct subgradients of a given convex function? If a function is

differentiable at a point w, then the differential set is trivial, as the following

claim shows.

claim 14.5 If f is differentiable at w then ∂f(w) contains a single element –

the gradient of f at w, ∇f(w).

Example 14.1 (The Differential Set of the Absolute Function) Consider the

absolute value function f(x) = |x|. Using Claim 14.5, we can easily construct

the differential set for the differentiable parts of f , and the only point that

requires special attention is x0 = 0. At that point, it is easy to verify that the

subdifferential is the set of all numbers between −1 and 1. Hence:

∂f(x) =

{1} if x > 0

{−1} if x < 0

[−1, 1] if x = 0

For many practical uses, we do not need to calculate the whole set of subgra-

dients at a given point, as one member of this set would suffice. The following

claim shows how to construct a sub-gradient for pointwise maximum functions.

claim 14.6 Let g(w) = maxi∈[r] gi(w) for r convex differentiable functions

g1, . . . , gr. Given some w, let j ∈ argmaxi gi(w). Then ∇gj(w) ∈ ∂g(w).

Proof Since gj is convex we have that for all u

gj(u) ≥ gj(w) + 〈u−w,∇gj(w)〉.

Since g(w) = gj(w) and g(u) ≥ gj(u) we obtain that

g(u) ≥ g(w) + 〈u−w,∇gj(w)〉,

which concludes our proof.

190 Stochastic Gradient Descent

Example 14.2 (A Subgradient of the Hinge Loss) Recall the hinge loss function

from Section 12.3, f(w) = max{0, 1− y〈w, x〉} for some vector x and scalar y.

To calculate a subgradient of the hinge loss at some w we rely on the preceding

claim and obtain that the vector v defined in the following is a subgradient of

the hinge loss at w:

v =

{
0 if 1− y〈w, x〉 ≤ 0

−yx if 1− y〈w, x〉 > 0

14.2.2 Subgradients of Lipschitz Functions

Recall that a function f : A→ R is ρ-Lipschitz if for all u,v ∈ A

|f(u)− f(v)| ≤ ρ ‖u− v‖.

The following lemma gives an equivalent definition using norms of subgradients.

lemma 14.7 Let A be a convex open set and let f : A→ R be a convex function.

Then, f is ρ-Lipschitz over A iff for all w ∈ A and v ∈ ∂f(w) we have that

‖v‖ ≤ ρ.

Proof Assume that for all v ∈ ∂f(w) we have that ‖v‖ ≤ ρ. Since v ∈ ∂f(w)

we have

f(w)− f(u) ≤ 〈v,w − u〉.

Bounding the right-hand side using Cauchy-Schwartz inequality we obtain

f(w)− f(u) ≤ 〈v, w − u〉 ≤ ‖v‖ ‖w − u‖ ≤ ρ ‖w − u‖.

An analogous argument can show that f(u) − f(w) ≤ ρ ‖w − u‖. Hence f is

ρ-Lipschitz.

Now assume that f is ρ-Lipschitz. Choose some w ∈ A,v ∈ ∂f(w). Since A

is open, there exists ε > 0 such that u = w + εv/‖v‖ belongs to A. Therefore,

〈u−w, v〉 = ε‖v‖ and ‖u−w‖ = ε. From the definition of the subgradient,

f(u)− f(w) ≥ 〈v,u−w〉 = ε‖v‖.

On the other hand, from the Lipschitzness of f we have

ρ ε = ρ ‖u−w‖ ≥ f(u)− f(w).

Combining the two inequalities we conclude that ‖v‖ ≤ ρ.

14.2.3 Subgradient Descent

The gradient descent algorithm can be generalized to nondifferentiable functions

by using a subgradient of f(w) at w(t), instead of the gradient. The analysis of

the convergence rate remains unchanged: Simply note that Equation (14.3) is

true for subgradients as well.

14.3 Stochastic Gradient Descent (SGD) 191

Figure 14.3 An illustration of the gradient descent algorithm (left) and the stochastic
gradient descent algorithm (right). The function to be minimized is
1.25(x+ 6)2 + (y − 8)2. For the stochastic case, the black line depicts the averaged
value of w.

14.3 Stochastic Gradient Descent (SGD)

In stochastic gradient descent we do not require the update direction to be based

exactly on the gradient. Instead, we allow the direction to be a random vector

and only require that its expected value at each iteration will equal the gradient

direction. Or, more generally, we require that the expected value of the random

vector will be a subgradient of the function at the current vector.

Stochastic Gradient Descent (SGD) for minimizing

f(w)

parameters: Scalar η > 0, integer T > 0

initialize: w(1) = 0

for t = 1, 2, . . . , T

choose vt at random from a distribution such that E[vt |w(t)] ∈ ∂f(w(t))

update w(t+1) = w(t) − ηvt
output w̄ = 1

T

∑T
t=1 w(t)

An illustration of stochastic gradient descent versus gradient descent is given

in Figure 14.3. As we will see in Section 14.5, in the context of learning problems,

it is easy to find a random vector whose expectation is a subgradient of the risk

function.

14.3.1 Analysis of SGD for Convex-Lipschitz-Bounded Functions

Recall the bound we achieved for the GD algorithm in Corollary 14.2. For the

stochastic case, in which only the expectation of vt is in ∂f(w(t)), we cannot

directly apply Equation (14.3). However, since the expected value of vt is a

192 Stochastic Gradient Descent

subgradient of f at w(t), we can still derive a similar bound on the expected

output of stochastic gradient descent. This is formalized in the following theorem.

theorem 14.8 Let B, ρ > 0. Let f be a convex function and let w? ∈ argminw:‖w‖≤B f(w).

Assume that SGD is run for T iterations with η =
√

B2

ρ2 T . Assume also that for

all t, ‖vt‖ ≤ ρ with probability 1. Then,

E [f(w̄)]− f(w?) ≤ B ρ√
T
.

Therefore, for any ε > 0, to achieve E[f(w̄)]− f(w?) ≤ ε, it suffices to run the

SGD algorithm for a number of iterations that satisfies

T ≥ B2ρ2

ε2
.

Proof Let us introduce the notation v1:t to denote the sequence v1, . . . ,vt.

Taking expectation of Equation (14.2), we obtain

E
v1:T

[f(w̄)− f(w?)] ≤ E
v1:T

[
1
T

T∑
t=1

(f(w(t))− f(w?))

]
.

Since Lemma 14.1 holds for any sequence v1,v2, ...vT , it applies to SGD as well.

By taking expectation of the bound in the lemma we have

E
v1:T

[
1

T

T∑
t=1

〈w(t) −w?,vt〉

]
≤ B ρ√

T
. (14.9)

It is left to show that

E
v1:T

[
1
T

T∑
t=1

(f(w(t))− f(w?))

]
≤ E

v1:T

[
1
T

T∑
t=1

〈w(t) −w?,vt〉

]
, (14.10)

which we will hereby prove.

Using the linearity of the expectation we have

E
v1:T

[
1

T

T∑
t=1

〈w(t) −w?,vt〉

]
=

1

T

T∑
t=1

E
v1:T

[〈w(t) −w?,vt〉].

Next, we recall the law of total expectation: For every two random variables α, β,

and a function g, Eα[g(α)] = Eβ Eα[g(α)|β]. Setting α = v1:t and β = v1:t−1 we

get that

E
v1:T

[〈w(t) −w?,vt〉] = E
v1:t

[〈w(t) −w?,vt〉]

= E
v1:t−1

E
v1:t

[〈w(t) −w?,vt〉 |v1:t−1] .

Once we know v1:t−1, the value of w(t) is not random any more and therefore

E
v1:t−1

E
v1:t

[〈w(t) −w?,vt〉 |v1:t−1] = E
v1:t−1

〈w(t) −w?, E
vt

[vt |v1:t−1]〉 .

14.4 Variants 193

Since w(t) only depends on v1:t−1 and SGD requires that Evt [vt |w(t)] ∈ ∂f(w(t))

we obtain that Evt [vt |v1:t−1] ∈ ∂f(w(t)). Thus,

E
v1: t−1

〈w(t) −w?, E
vt

[vt |v1: t−1]〉 ≥ E
v1: t−1

[f(w(t))− f(w?)].

Overall, we have shown that

E
v1:T

[〈w(t) −w?,vt〉] ≥ E
v1:t−1

[f(w(t))− f(w?)]

= E
v1:T

[f(w(t))− f(w?)] .

Summing over t, dividing by T , and using the linearity of expectation, we get

that Equation (14.10) holds, which concludes our proof.

14.4 Variants

In this section we describe several variants of Stochastic Gradient Descent.

14.4.1 Adding a Projection Step

In the previous analyses of the GD and SGD algorithms, we required that the

norm of w? will be at most B, which is equivalent to requiring that w? is in the

set H = {w : ‖w‖ ≤ B}. In terms of learning, this means restricting ourselves to

a B-bounded hypothesis class. Yet any step we take in the opposite direction of

the gradient (or its expected direction) might result in stepping out of this bound,

and there is even no guarantee that w̄ satisfies it. We show in the following how

to overcome this problem while maintaining the same convergence rate.

The basic idea is to add a projection step; namely, we will now have a two-step

update rule, where we first subtract a subgradient from the current value of w

and then project the resulting vector onto H. Formally,

1.. w(t+ 1
2) = w(t) − ηvt

2.. w(t+1) = argminw∈H ‖w −w(t+ 1
2)‖

The projection step replaces the current value of w by the vector in H closest

to it.

Clearly, the projection step guarantees that w(t) ∈ H for all t. Since H is

convex this also implies that w̄ ∈ H as required. We next show that the analysis

of SGD with projections remains the same. This is based on the following lemma.

lemma 14.9 (Projection Lemma) Let H be a closed convex set and let v be the

projection of w onto H, namely,

v = argmin
x∈H

‖x−w‖2.

194 Stochastic Gradient Descent

Then, for every u ∈ H,

‖w − u‖2 − ‖v − u‖2 ≥ 0.

Proof By the convexity ofH, for every α ∈ (0, 1) we have that v+α(u−v) ∈ H.

Therefore, from the optimality of v we obtain

‖v −w‖2 ≤ ‖v + α(u− v)−w‖2

= ‖v −w‖2 + 2α〈v −w,u− v〉+ α2‖u− v‖2.

Rearranging, we obtain

2〈v −w,u− v〉 ≥ −α ‖u− v‖2.

Taking the limit α→ 0 we get that

〈v −w,u− v〉 ≥ 0.

Therefore,

‖w − u‖2 = ‖w − v + v − u‖2

= ‖w − v‖2 + ‖v − u‖2 + 2〈v −w, u− v〉
≥ ‖v − u‖2.

Equipped with the preceding lemma, we can easily adapt the analysis of SGD

to the case in which we add projection steps on a closed and convex set. Simply

note that for every t,

‖w(t+1) −w?‖2 − ‖w(t) −w?‖2

= ‖w(t+1) −w?‖2 − ‖w(t+ 1
2) −w?‖2 + ‖w(t+ 1

2) −w?‖2 − ‖w(t) −w?‖2

≤ ‖w(t+ 1
2) −w?‖2 − ‖w(t) −w?‖2.

Therefore, Lemma 14.1 holds when we add projection steps and hence the rest

of the analysis follows directly.

14.4.2 Variable Step Size

Another variant of SGD is decreasing the step size as a function of t. That is,

rather than updating with a constant η, we use ηt. For instance, we can set

ηt = B
ρ
√
t

and achieve a bound similar to Theorem 14.8. The idea is that when

we are closer to the minimum of the function, we take our steps more carefully,

so as not to “overshoot” the minimum.

14.4 Variants 195

14.4.3 Other Averaging Techniques

We have set the output vector to be w̄ = 1
T

∑T
t=1 w(t). There are alternative

approaches such as outputting w(t) for some random t ∈ [t], or outputting the

average of w(t) over the last αT iterations, for some α ∈ (0, 1). One can also take

a weighted average of the last few iterates. These more sophisticated averaging

schemes can improve the convergence speed in some situations, such as in the

case of strongly convex functions defined in the following.

14.4.4 Strongly Convex Functions*

In this section we show a variant of SGD that enjoys a faster convergence rate for

problems in which the objective function is strongly convex (see Definition 13.4

of strong convexity in the previous chapter). We rely on the following claim,

which generalizes Lemma 13.5.

claim 14.10 If f is λ-strongly convex then for every w,u and v ∈ ∂f(w) we

have

〈w − u,v〉 ≥ f(w)− f(u) + λ
2 ‖w − u‖2.

The proof is similar to the proof of Lemma 13.5 and is left as an exercise.

SGD for minimizing a λ-strongly convex function

Goal: Solve minw∈H f(w)

parameter: T

initialize: w(1) = 0

for t = 1, . . . , T

Choose a random vector vt s.t. E[vt|w(t)] ∈ ∂f(w(t))

Set ηt = 1/(λ t)

Set w(t+ 1
2) = w(t) − ηtvt

Set w(t+1) = arg minw∈H ‖w −w(t+ 1
2)‖2

output: w̄ = 1
T

∑T
t=1 w(t)

theorem 14.11 Assume that f is λ-strongly convex and that E[‖vt‖2] ≤ ρ2.

Let w? ∈ argminw∈H f(w) be an optimal solution. Then,

E[f(w̄)]− f(w?) ≤ ρ2

2λT
(1 + log(T)).

Proof Let ∇(t) = E[vt|w(t)]. Since f is strongly convex and ∇(t) is in the

subgradient set of f at w(t) we have that

〈w(t) −w?,∇(t)〉 ≥ f(w(t))− f(w?) + λ
2 ‖w

(t) −w?‖2 . (14.11)

Next, we show that

〈w(t) −w?,∇(t)〉 ≤ E[‖w(t) −w?‖2 − ‖w(t+1) −w?‖2]

2 ηt
+
ηt
2
ρ2. (14.12)

196 Stochastic Gradient Descent

Since w(t+1) is the projection of w(t+ 1
2) onto H, and w? ∈ H we have that

‖w(t+ 1
2) −w?‖2 ≥ ‖w(t+1) −w?‖2. Therefore,

‖w(t) −w?‖2 − ‖w(t+1) −w?‖2 ≥ ‖w(t) −w?‖2 − ‖w(t+ 1
2) −w?‖2

= 2ηt〈w(t) −w?,vt〉 − η2
t ‖vt‖2 .

Taking expectation of both sides, rearranging, and using the assumption E[‖vt‖2] ≤
ρ2 yield Equation (14.12). Comparing Equation (14.11) and Equation (14.12) and

summing over t we obtain

T∑
t=1

(E[f(w(t))]− f(w?))

≤ E

[
T∑
t=1

(
‖w(t) −w?‖2 − ‖w(t+1) −w?‖2

2 ηt
− λ

2 ‖w
(t) −w?‖2

)]
+
ρ2

2

T∑
t=1

ηt.

Next, we use the definition ηt = 1/(λ t) and note that the first sum on the

right-hand side of the equation collapses to −λT‖w(T+1) −w?‖2 ≤ 0. Thus,

T∑
t=1

(E[f(w(t))]− f(w?)) ≤ ρ2

2λ

T∑
t=1

1

t
≤ ρ2

2λ
(1 + log(T)).

The theorem follows from the preceding by dividing by T and using Jensen’s

inequality.

Remark 14.3 Rakhlin, Shamir & Sridharan (2012) derived a convergence rate

in which the log(T) term is eliminated for a variant of the algorithm in which

we output the average of the last T/2 iterates, w̄ = 2
T

∑T
t=T/2+1 w(t). Shamir &

Zhang (2013) have shown that Theorem 14.11 holds even if we output w̄ = w(T).

14.5 Learning with SGD

We have so far introduced and analyzed the SGD algorithm for general convex

functions. Now we shall consider its applicability to learning tasks.

14.5.1 SGD for Risk Minimization

Recall that in learning we face the problem of minimizing the risk function

LD(w) = E
z∼D

[`(w, z)].

We have seen the method of empirical risk minimization, where we minimize the

empirical risk, LS(w), as an estimate to minimizing LD(w). SGD allows us to

take a different approach and minimize LD(w) directly. Since we do not know

D, we cannot simply calculate ∇LD(w(t)) and minimize it with the GD method.

With SGD, however, all we need is to find an unbiased estimate of the gradient of

14.5 Learning with SGD 197

LD(w), that is, a random vector whose conditional expected value is ∇LD(w(t)).

We shall now see how such an estimate can be easily constructed.

For simplicity, let us first consider the case of differentiable loss functions.

Hence the risk function LD is also differentiable. The construction of the random

vector vt will be as follows: First, sample z ∼ D. Then, define vt to be the

gradient of the function `(w, z) with respect to w, at the point w(t). Then, by

the linearity of the gradient we have

E[vt|w(t)] = E
z∼D

[∇`(w(t), z)] = ∇ E
z∼D

[`(w(t), z)] = ∇LD(w(t)). (14.13)

The gradient of the loss function `(w, z) at w(t) is therefore an unbiased estimate

of the gradient of the risk function LD(w(t)) and is easily constructed by sampling

a single fresh example z ∼ D at each iteration t.

The same argument holds for nondifferentiable loss functions. We simply let

vt be a subgradient of `(w, z) at w(t). Then, for every u we have

`(u, z)− `(w(t), z) ≥ 〈u−w(t),vt〉.

Taking expectation on both sides with respect to z ∼ D and conditioned on the

value of w(t) we obtain

LD(u)− LD(w(t)) = E[`(u, z)− `(w(t), z)|w(t)]

≥ E[〈u−w(t),vt〉|w(t)]

= 〈u−w(t),E[vt|w(t)]〉.

It follows that E[vt|w(t)] is a subgradient of LD(w) at w(t).

To summarize, the stochastic gradient descent framework for minimizing the

risk is as follows.

Stochastic Gradient Descent (SGD) for minimizing

LD(w)

parameters: Scalar η > 0, integer T > 0

initialize: w(1) = 0

for t = 1, 2, . . . , T

sample z ∼ D
pick vt ∈ ∂`(w(t), z)

update w(t+1) = w(t) − ηvt
output w̄ = 1

T

∑T
t=1 w(t)

We shall now use our analysis of SGD to obtain a sample complexity anal-

ysis for learning convex-Lipschitz-bounded problems. Theorem 14.8 yields the

following:

corollary 14.12 Consider a convex-Lipschitz-bounded learning problem with

parameters ρ,B. Then, for every ε > 0, if we run the SGD method for minimizing

198 Stochastic Gradient Descent

LD(w) with a number of iterations (i.e., number of examples)

T ≥ B2ρ2

ε2

and with η =
√

B2

ρ2 T , then the output of SGD satisfies

E [LD(w̄)] ≤ min
w∈H

LD(w) + ε.

It is interesting to note that the required sample complexity is of the same order

of magnitude as the sample complexity guarantee we derived for regularized loss

minimization. In fact, the sample complexity of SGD is even better than what

we have derived for regularized loss minimization by a factor of 8.

14.5.2 Analyzing SGD for Convex-Smooth Learning Problems

In the previous chapter we saw that the regularized loss minimization rule also

learns the class of convex-smooth-bounded learning problems. We now show that

the SGD algorithm can be also used for such problems.

theorem 14.13 Assume that for all z, the loss function `(·, z) is convex, β-

smooth, and nonnegative. Then, if we run the SGD algorithm for minimizing

LD(w) we have that for every w?,

E[LD(w̄)] ≤ 1

1− ηβ

(
LD(w?) +

‖w?‖2

2η T

)
.

Proof Recall that if a function is β-smooth and nonnegative then it is self-

bounded:

‖∇f(w)‖2 ≤ 2βf(w).

To analyze SGD for convex-smooth problems, let us define z1, . . . , zT the random

samples of the SGD algorithm, let ft(·) = `(·, zt), and note that vt = ∇ft(w(t)).

For all t, ft is a convex function and therefore ft(w
(t))−ft(w?) ≤ 〈vt,w(t)−w?〉.

Summing over t and using Lemma 14.1 we obtain

T∑
t=1

(ft(w
(t))− ft(w?)) ≤

T∑
t=1

〈vt,w(t) −w?〉 ≤ ‖w
?‖2

2η
+
η

2

T∑
t=1

‖vt‖2.

Combining the preceding with the self-boundedness of ft yields

T∑
t=1

(ft(w
(t))− ft(w?)) ≤ ‖w

?‖2

2η
+ ηβ

T∑
t=1

ft(w
(t)).

Dividing by T and rearranging, we obtain

1

T

T∑
t=1

ft(w
(t)) ≤ 1

1− ηβ

(
1

T

T∑
t=1

ft(w
?) +

‖w?‖2

2η T

)
.

Next, we take expectation of the two sides of the preceding equation with respect

14.5 Learning with SGD 199

to z1, . . . , zT . Clearly, E[ft(w
?)] = LD(w?). In addition, using the same argument

as in the proof of Theorem 14.8 we have that

E

[
1

T

T∑
t=1

ft(w
(t))

]
= E

[
1

T

T∑
t=1

LD(w(t))

]
≥ E[LD(w̄)].

Combining all we conclude our proof.

As a direct corollary we obtain:

corollary 14.14 Consider a convex-smooth-bounded learning problem with

parameters β,B. Assume in addition that `(0, z) ≤ 1 for all z ∈ Z. For every

ε > 0, set η = 1
β(1+3/ε) . Then, running SGD with T ≥ 12B2β/ε2 yields

E[LD(w̄)] ≤ min
w∈H

LD(w) + ε.

14.5.3 SGD for Regularized Loss Minimization

We have shown that SGD enjoys the same worst-case sample complexity bound

as regularized loss minimization. However, on some distributions, regularized loss

minimization may yield a better solution. Therefore, in some cases we may want

to solve the optimization problem associated with regularized loss minimization,

namely,1

min
w

(
λ

2
‖w‖2 + LS(w)

)
. (14.14)

Since we are dealing with convex learning problems in which the loss function is

convex, the preceding problem is also a convex optimization problem that can

be solved using SGD as well, as we shall see in this section.

Define f(w) = λ
2 ‖w‖

2 + LS(w). Note that f is a λ-strongly convex function;

therefore, we can apply the SGD variant given in Section 14.4.4 (with H = Rd).
To apply this algorithm, we only need to find a way to construct an unbiased

estimate of a subgradient of f at w(t). This is easily done by noting that if

we pick z uniformly at random from S, and choose vt ∈ ∂`(w(t), z) then the

expected value of λw(t) + vt is a subgradient of f at w(t).

To analyze the resulting algorithm, we first rewrite the update rule (assuming

1 We divided λ by 2 for convenience.

200 Stochastic Gradient Descent

that H = Rd and therefore the projection step does not matter) as follows

w(t+1) = w(t) − 1

λ t

(
λw(t) + vt

)
=

(
1− 1

t

)
w(t) − 1

λ t
vt

=
t− 1

t
w(t) − 1

λ t
vt

=
t− 1

t

(
t− 2

t− 1
w(t−1) − 1

λ (t− 1)
vt−1

)
− 1

λ t
vt

= − 1

λ t

t∑
i=1

vi. (14.15)

If we assume that the loss function is ρ-Lipschitz, it follows that for all t we have

‖vt‖ ≤ ρ and therefore ‖λw(t)‖ ≤ ρ, which yields

‖λw(t) + vt‖ ≤ 2ρ.

Theorem 14.11 therefore tells us that after performing T iterations we have that

E[f(w̄)]− f(w?) ≤ 4ρ2

λT
(1 + log(T)).

14.6 Summary

We have introduced the Gradient Descent and Stochastic Gradient Descent algo-

rithms, along with several of their variants. We have analyzed their convergence

rate and calculated the number of iterations that would guarantee an expected

objective of at most ε plus the optimal objective. Most importantly, we have

shown that by using SGD we can directly minimize the risk function. We do

so by sampling a point i.i.d from D and using a subgradient of the loss of the

current hypothesis w(t) at this point as an unbiased estimate of the gradient (or

a subgradient) of the risk function. This implies that a bound on the number of

iterations also yields a sample complexity bound. Finally, we have also shown

how to apply the SGD method to the problem of regularized risk minimization.

In future chapters we show how this yields extremely simple solvers to some

optimization problems associated with regularized risk minimization.

14.7 Bibliographic Remarks

SGD dates back to Robbins & Monro (1951). It is especially effective in large

scale machine learning problems. See, for example, (Murata 1998, Le Cun 2004,

Zhang 2004, Bottou & Bousquet 2008, Shalev-Shwartz, Singer & Srebro 2007,

Shalev-Shwartz & Srebro 2008). In the optimization community it was studied

14.8 Exercises 201

in the context of stochastic optimization. See, for example, (Nemirovski & Yudin

1978, Nesterov & Nesterov 2004, Nesterov 2005, Nemirovski, Juditsky, Lan &

Shapiro 2009, Shapiro, Dentcheva & Ruszczyński 2009).

The bound we have derived for strongly convex function is due to Hazan,

Agarwal & Kale (2007). As mentioned previously, improved bounds have been

obtained in Rakhlin et al. (2012).

14.8 Exercises

1. Prove Claim 14.10. Hint: Extend the proof of Lemma 13.5.

2. Prove Corollary 14.14.

3. Perceptron as a subgradient descent algorithm: Let S = ((x1, y1), . . . , (xm, ym)) ∈
(Rd × {±1})m. Assume that there exists w ∈ Rd such that for every i ∈ [m]

we have yi〈w,xi〉 ≥ 1, and let w? be a vector that has the minimal norm

among all vectors that satisfy the preceding requirement. Let R = maxi ‖xi‖.
Define a function

f(w) = max
i∈[m]

(1− yi 〈w,xi〉) .

• Show that minw:‖w‖≤‖w?‖ f(w) = 0 and show that any w for which f(w) <

1 separates the examples in S.

• Show how to calculate a subgradient of f .

• Describe and analyze the subgradient descent algorithm for this case. Com-

pare the algorithm and the analysis to the Batch Perceptron algorithm

given in Section 9.1.2.

4. Variable step size (*): Prove an analog of Theorem 14.8 for SGD with a

variable step size, ηt = B
ρ
√
t
.

15 Support Vector Machines

In this chapter and the next we discuss a very useful machine learning tool: the

support vector machine paradigm (SVM) for learning linear predictors in high

dimensional feature spaces. The high dimensionality of the feature space raises

both sample complexity and computational complexity challenges.

The SVM algorithmic paradigm tackles the sample complexity challenge by

searching for “large margin” separators. Roughly speaking, a halfspace separates

a training set with a large margin if all the examples are not only on the correct

side of the separating hyperplane but also far away from it. Restricting the

algorithm to output a large margin separator can yield a small sample complexity

even if the dimensionality of the feature space is high (and even infinite). We

introduce the concept of margin and relate it to the regularized loss minimization

paradigm as well as to the convergence rate of the Perceptron algorithm.

In the next chapter we will tackle the computational complexity challenge

using the idea of kernels.

15.1 Margin and Hard-SVM

Let S = (x1, y1), . . . , (xm, ym) be a training set of examples, where each xi ∈ Rd
and yi ∈ {±1}. We say that this training set is linearly separable, if there exists

a halfspace, (w, b), such that yi = sign(〈w,xi〉 + b) for all i. Alternatively, this

condition can be rewritten as

∀i ∈ [m], yi(〈w,xi〉+ b) > 0.

All halfspaces (w, b) that satisfy this condition are ERM hypotheses (their 0-1

error is zero, which is the minimum possible error). For any separable training

sample, there are many ERM halfspaces. Which one of them should the learner

pick?

Consider, for example, the training set described in the picture that follows.

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

15.1 Margin and Hard-SVM 203

x

x

While both the dashed-black and solid-green hyperplanes separate the four ex-

amples, our intuition would probably lead us to prefer the black hyperplane over

the green one. One way to formalize this intuition is using the concept of margin.

The margin of a hyperplane with respect to a training set is defined to be the

minimal distance between a point in the training set and the hyperplane. If a

hyperplane has a large margin, then it will still separate the training set even if

we slightly perturb each instance.

We will see later on that the true error of a halfspace can be bounded in terms

of the margin it has over the training sample (the larger the margin, the smaller

the error), regardless of the Euclidean dimension in which this halfspace resides.

Hard-SVM is the learning rule in which we return an ERM hyperplane that

separates the training set with the largest possible margin. To define Hard-SVM

formally, we first express the distance between a point x to a hyperplane using

the parameters defining the halfspace.

claim 15.1 The distance between a point x and the hyperplane defined by

(w, b) where ‖w‖ = 1 is |〈w,x〉+ b|.

Proof The distance between a point x and the hyperplane is defined as

min{‖x− v‖ : 〈w,v〉+ b = 0}.

Taking v = x− (〈w,x〉+ b)w we have that

〈w,v〉+ b = 〈w,x〉 − (〈w,x〉+ b)‖w‖2 + b = 0,

and

‖x− v‖ = |〈w,x〉+ b| ‖w‖ = |〈w,x〉+ b|.

Hence, the distance is at most |〈w,x〉+ b|. Next, take any other point u on the

hyperplane, thus 〈w,u〉+ b = 0. We have

‖x− u‖2 = ‖x− v + v − u‖2

= ‖x− v‖2 + ‖v − u‖2 + 2〈x− v,v − u〉
≥ ‖x− v‖2 + 2〈x− v,v − u〉
= ‖x− v‖2 + 2(〈w,x〉+ b)〈w,v − u〉
= ‖x− v‖2,

where the last equality is because 〈w,v〉 = 〈w,u〉 = −b. Hence, the distance

204 Support Vector Machines

between x and u is at least the distance between x and v, which concludes our

proof.

On the basis of the preceding claim, the closest point in the training set to the

separating hyperplane is mini∈[m] |〈w,xi〉+ b|. Therefore, the Hard-SVM rule is

argmax
(w,b):‖w‖=1

min
i∈[m]

|〈w,xi〉+ b| s.t. ∀i, yi(〈w,xi〉+ b) > 0.

Whenever there is a solution to the preceding problem (i.e., we are in the sepa-

rable case), we can write an equivalent problem as follows (see Exercise 1):

argmax
(w,b):‖w‖=1

min
i∈[m]

yi(〈w,xi〉+ b). (15.1)

Next, we give another equivalent formulation of the Hard-SVM rule as a quadratic

optimization problem.1

Hard-SVM

input: (x1, y1), . . . , (xm, ym)

solve:

(w0, b0) = argmin
(w,b)

‖w‖2 s.t. ∀i, yi(〈w,xi〉+ b) ≥ 1 (15.2)

output: ŵ = w0

‖w0‖ , b̂ = b0
‖w0‖

The lemma that follows shows that the output of hard-SVM is indeed the

separating hyperplane with the largest margin. Intuitively, hard-SVM searches

for w of minimal norm among all the vectors that separate the data and for

which |〈w,xi〉+ b| ≥ 1 for all i. In other words, we enforce the margin to be 1,

but now the units in which we measure the margin scale with the norm of w.

Therefore, finding the largest margin halfspace boils down to finding w whose

norm is minimal. Formally:

lemma 15.2 The output of Hard-SVM is a solution of Equation (15.1).

Proof Let (w?, b?) be a solution of Equation (15.1) and define the margin

achieved by (w?, b?) to be γ? = mini∈[m] yi(〈w?,xi〉 + b?). Therefore, for all

i we have

yi(〈w?,xi〉+ b?) ≥ γ?

or equivalently

yi(〈w
?

γ? ,xi〉+ b?

γ?) ≥ 1.

Hence, the pair (w?

γ? ,
b?

γ?) satisfies the conditions of the quadratic optimization

1 A quadratic optimization problem is an optimization problem in which the objective is a

convex quadratic function and the constraints are linear inequalities.

15.1 Margin and Hard-SVM 205

problem given in Equation (15.2). Therefore, ‖w0‖ ≤ ‖w
?

γ? ‖ = 1
γ? . It follows that

for all i,

yi(〈ŵ,xi〉+ b̂) =
1

‖w0‖
yi(〈w0,xi〉+ b0) ≥ 1

‖w0‖
≥ γ?.

Since ‖ŵ‖ = 1 we obtain that (ŵ, b̂) is an optimal solution of Equation (15.1).

15.1.1 The Homogenous Case

It is often more convenient to consider homogenous halfspaces, namely, halfspaces

that pass through the origin and are thus defined by sign(〈w,x〉), where the bias

term b is set to be zero. Hard-SVM for homogenous halfspaces amounts to solving

min
w
‖w‖2 s.t. ∀i, yi〈w,xi〉 ≥ 1. (15.3)

As we discussed in Chapter 9, we can reduce the problem of learning nonhomogenous

halfspaces to the problem of learning homogenous halfspaces by adding one more

feature to each instance of xi, thus increasing the dimension to d+ 1.

Note, however, that the optimization problem given in Equation (15.2) does

not regularize the bias term b, while if we learn a homogenous halfspace in Rd+1

using Equation (15.3) then we regularize the bias term (i.e., the d+1 component

of the weight vector) as well. However, regularizing b usually does not make a

significant difference to the sample complexity.

15.1.2 The Sample Complexity of Hard-SVM

Recall that the VC-dimension of halfspaces in Rd is d + 1. It follows that the

sample complexity of learning halfspaces grows with the dimensionality of the

problem. Furthermore, the fundamental theorem of learning tells us that if the

number of examples is significantly smaller than d/ε then no algorithm can learn

an ε-accurate halfspace. This is problematic when d is very large.

To overcome this problem, we will make an additional assumption on the

underlying data distribution. In particular, we will define a “separability with

margin γ” assumption and will show that if the data is separable with margin

γ then the sample complexity is bounded from above by a function of 1/γ2. It

follows that even if the dimensionality is very large (or even infinite), as long as

the data adheres to the separability with margin assumption we can still have a

small sample complexity. There is no contradiction to the lower bound given in

the fundamental theorem of learning because we are now making an additional

assumption on the underlying data distribution.

Before we formally define the separability with margin assumption, there is a

scaling issue we need to resolve. Suppose that a training set S = (x1, y1), . . . , (xm, ym)

is separable with a margin γ, namely, the maximal objective value of Equa-

tion (15.1) is at least γ. Then, for any positive scalar α > 0, the training set

206 Support Vector Machines

S′ = (αx1, y1), . . . , (αxm, ym) is separable with a margin of αγ. That is, a sim-

ple scaling of the data can make it separable with an arbitrarily large margin. It

follows that in order to give a meaningful definition of margin we must take into

account the scale of the examples as well. One way to formalize this is using the

definition that follows.

definition 15.3 Let D be a distribution over Rd × {±1}. We say that D is

separable with a (γ, ρ)-margin if there exists (w?, b?) such that ‖w?‖ = 1 and

such that with probability 1 over the choice of (x, y) ∼ D we have that y(〈w?,x〉+
b?) ≥ γ and ‖x‖ ≤ ρ. Similarly, we say that D is separable with a (γ, ρ)-margin

using a homogenous halfspace if the preceding holds with a halfspace of the form

(w?, 0).

In the advanced part of the book (Chapter 26), we will prove that the sample

complexity of Hard-SVM depends on (ρ/γ)2 and is independent of the dimension

d. In particular, Theorem 26.13 in Section 26.3 states the following:

theorem 15.4 Let D be a distribution over Rd×{±1} that satisfies the (γ, ρ)-

separability with margin assumption using a homogenous halfspace. Then, with

probability of at least 1 − δ over the choice of a training set of size m, the 0-1

error of the output of Hard-SVM is at most√
4 (ρ/γ)2

m
+

√
2 log(2/δ)

m
.

Remark 15.1 (Margin and the Perceptron) In Section 9.1.2 we have described

and analyzed the Perceptron algorithm for finding an ERM hypothesis with

respect to the class of halfspaces. In particular, in Theorem 9.1 we upper bounded

the number of updates the Perceptron might make on a given training set. It

can be shown (see Exercise 2) that the upper bound is exactly (ρ/γ)2, where ρ

is the radius of examples and γ is the margin.

15.2 Soft-SVM and Norm Regularization

The Hard-SVM formulation assumes that the training set is linearly separable,

which is a rather strong assumption. Soft-SVM can be viewed as a relaxation of

the Hard-SVM rule that can be applied even if the training set is not linearly

separable.

The optimization problem in Equation (15.2) enforces the hard constraints

yi(〈w,xi〉+ b) ≥ 1 for all i. A natural relaxation is to allow the constraint to be

violated for some of the examples in the training set. This can be modeled by

introducing nonnegative slack variables, ξ1, . . . , ξm, and replacing each constraint

yi(〈w,xi〉+b) ≥ 1 by the constraint yi(〈w,xi〉+b) ≥ 1−ξi. That is, ξi measures

by how much the constraint yi(〈w,xi〉+b) ≥ 1 is being violated. Soft-SVM jointly

minimizes the norm of w (corresponding to the margin) and the average of ξi
(corresponding to the violations of the constraints). The tradeoff between the two

15.2 Soft-SVM and Norm Regularization 207

terms is controlled by a parameter λ. This leads to the Soft-SVM optimization

problem:

Soft-SVM

input: (x1, y1), . . . , (xm, ym)

parameter: λ > 0

solve:

min
w,b,ξ

(
λ‖w‖2 +

1

m

m∑
i=1

ξi

)
s.t. ∀i, yi(〈w,xi〉+ b) ≥ 1− ξi and ξi ≥ 0

(15.4)

output: w, b

We can rewrite Equation (15.4) as a regularized loss minimization problem.

Recall the definition of the hinge loss:

`hinge((w, b), (x, y)) = max{0, 1− y(〈w,x〉+ b)}.

Given (w, b) and a training set S, the averaged hinge loss on S is denoted by

Lhinge
S ((w, b)). Now, consider the regularized loss minimization problem:

min
w,b

(
λ‖w‖2 + Lhinge

S ((w, b))
)
. (15.5)

claim 15.5 Equation (15.4) and Equation (15.5) are equivalent.

Proof Fix some w, b and consider the minimization over ξ in Equation (15.4).

Fix some i. Since ξi must be nonnegative, the best assignment to ξi would be 0

if yi(〈w,xi〉+ b) ≥ 1 and would be 1− yi(〈w,xi〉+ b) otherwise. In other words,

ξi = `hinge((w, b), (xi, yi)) for all i, and the claim follows.

We therefore see that Soft-SVM falls into the paradigm of regularized loss

minimization that we studied in the previous chapter. A Soft-SVM algorithm,

that is, a solution for Equation (15.5), has a bias toward low norm separators.

The objective function that we aim to minimize in Equation (15.5) penalizes not

only for training errors but also for large norm.

It is often more convenient to consider Soft-SVM for learning a homogenous

halfspace, where the bias term b is set to be zero, which yields the following

optimization problem:

min
w

(
λ‖w‖2 + Lhinge

S (w)
)
, (15.6)

where

Lhinge
S (w) =

1

m

m∑
i=1

max{0, 1− y〈w,xi〉}.

208 Support Vector Machines

15.2.1 The Sample Complexity of Soft-SVM

We now analyze the sample complexity of Soft-SVM for the case of homogenous

halfspaces (namely, the output of Equation (15.6)). In Corollary 13.8 we derived

a generalization bound for the regularized loss minimization framework assuming

that the loss function is convex and Lipschitz. We have already shown that the

hinge loss is convex so it is only left to analyze the Lipschitzness of the hinge

loss.

claim 15.6 Let f(w) = max{0, 1− y〈w,x〉}. Then, f is ‖x‖-Lipschitz.

Proof It is easy to verify that any subgradient of f at w is of the form αx where

|α| ≤ 1. The claim now follows from Lemma 14.7.

Corollary 13.8 therefore yields the following:

corollary 15.7 Let D be a distribution over X × {0, 1}, where X = {x :

‖x‖ ≤ ρ}. Consider running Soft-SVM (Equation (15.6)) on a training set S ∼
Dm and let A(S) be the solution of Soft-SVM. Then, for every u,

E
S∼Dm

[Lhinge
D (A(S))] ≤ Lhinge

D (u) + λ‖u‖2 +
2ρ2

λm
.

Furthermore, since the hinge loss upper bounds the 0−1 loss we also have

E
S∼Dm

[L0−1
D (A(S))] ≤ Lhinge

D (u) + λ‖u‖2 +
2ρ2

λm
.

Last, for every B > 0, if we set λ =
√

2ρ2

B2m then

E
S∼Dm

[L0−1
D (A(S))] ≤ E

S∼Dm
[Lhinge
D (A(S))] ≤ min

w:‖w‖≤B
Lhinge
D (w) +

√
8ρ2B2

m
.

We therefore see that we can control the sample complexity of learning a half-

space as a function of the norm of that halfspace, independently of the Euclidean

dimension of the space over which the halfspace is defined. This becomes highly

significant when we learn via embeddings into high dimensional feature spaces,

as we will consider in the next chapter.

Remark 15.2 The condition that X will contain vectors with a bounded norm

follows from the requirement that the loss function will be Lipschitz. This is

not just a technicality. As we discussed before, separation with large margin

is meaningless without imposing a restriction on the scale of the instances. In-

deed, without a constraint on the scale, we can always enlarge the margin by

multiplying all instances by a large scalar.

15.2.2 Margin and Norm-Based Bounds versus Dimension

The bounds we have derived for Hard-SVM and Soft-SVM do not depend on the

dimension of the instance space. Instead, the bounds depend on the norm of the

15.2 Soft-SVM and Norm Regularization 209

examples, ρ, the norm of the halfspace B (or equivalently the margin parameter

γ) and, in the nonseparable case, the bounds also depend on the minimum hinge

loss of all halfspaces of norm ≤ B. In contrast, the VC-dimension of the class of

homogenous halfspaces is d, which implies that the error of an ERM hypothesis

decreases as
√
d/m does. We now give an example in which ρ2B2 � d; hence

the bound given in Corollary 15.7 is much better than the VC bound.

Consider the problem of learning to classify a short text document according

to its topic, say, whether the document is about sports or not. We first need to

represent documents as vectors. One simple yet effective way is to use a bag-

of-words representation. That is, we define a dictionary of words and set the

dimension d to be the number of words in the dictionary. Given a document,

we represent it as a vector x ∈ {0, 1}d, where xi = 1 if the i’th word in the

dictionary appears in the document and xi = 0 otherwise. Therefore, for this

problem, the value of ρ2 will be the maximal number of distinct words in a given

document.

A halfspace for this problem assigns weights to words. It is natural to assume

that by assigning positive and negative weights to a few dozen words we will

be able to determine whether a given document is about sports or not with

reasonable accuracy. Therefore, for this problem, the value of B2 can be set to

be less than 100. Overall, it is reasonable to say that the value of B2ρ2 is smaller

than 10,000.

On the other hand, a typical size of a dictionary is much larger than 10,000.

For example, there are more than 100,000 distinct words in English. We have

therefore shown a problem in which there can be an order of magnitude difference

between learning a halfspace with the SVM rule and learning a halfspace using

the vanilla ERM rule.

Of course, it is possible to construct problems in which the SVM bound will

be worse than the VC bound. When we use SVM, we in fact introduce another

form of inductive bias – we prefer large margin halfspaces. While this induc-

tive bias can significantly decrease our estimation error, it can also enlarge the

approximation error.

15.2.3 The Ramp Loss*

The margin-based bounds we have derived in Corollary 15.7 rely on the fact that

we minimize the hinge loss. As we have shown in the previous subsection, the

term
√
ρ2B2/m can be much smaller than the corresponding term in the VC

bound,
√
d/m. However, the approximation error in Corollary 15.7 is measured

with respect to the hinge loss while the approximation error in VC bounds is

measured with respect to the 0−1 loss. Since the hinge loss upper bounds the

0−1 loss, the approximation error with respect to the 0−1 loss will never exceed

that of the hinge loss.

It is not possible to derive bounds that involve the estimation error term√
ρ2B2/m for the 0−1 loss. This follows from the fact that the 0−1 loss is scale

210 Support Vector Machines

insensitive, and therefore there is no meaning to the norm of w or its margin

when we measure error with the 0−1 loss. However, it is possible to define a loss

function that on one hand it is scale sensitive and thus enjoys the estimation

error
√
ρ2B2/m while on the other hand it is more similar to the 0−1 loss. One

option is the ramp loss, defined as

`ramp(w, (x, y)) = min{1, `hinge(w, (x, y))} = min{1 , max{0, 1− y〈w,x〉}}.

The ramp loss penalizes mistakes in the same way as the 0−1 loss and does not

penalize examples that are separated with margin. The difference between the

ramp loss and the 0−1 loss is only with respect to examples that are correctly

classified but not with a significant margin. Generalization bounds for the ramp

loss are given in the advanced part of this book (see Appendix 26.3).

y〈w,x〉

`ramp

`hinge

`0−1

1

1

The reason SVM relies on the hinge loss and not on the ramp loss is that

the hinge loss is convex and, therefore, from the computational point of view,

minimizing the hinge loss can be performed efficiently. In contrast, the problem

of minimizing the ramp loss is computationally intractable.

15.3 Optimality Conditions and “Support Vectors”*

The name “Support Vector Machine” stems from the fact that the solution of

hard-SVM, w0, is supported by (i.e., is in the linear span of) the examples that

are exactly at distance 1/‖w0‖ from the separating hyperplane. These vectors are

therefore called support vectors. To see this, we rely on Fritz John optimality

conditions.

theorem 15.8 Let w0 be as defined in Equation (15.3) and let I = {i :

|〈w0,xi〉| = 1}. Then, there exist coefficients α1, . . . , αm such that

w0 =
∑
i∈I

αixi.

The examples {xi : i ∈ I} are called support vectors.

The proof of this theorem follows by applying the following lemma to Equa-

tion (15.3).

15.4 Duality* 211

lemma 15.9 (Fritz John) Suppose that

w? ∈ argmin
w

f(w) s.t. ∀i ∈ [m], gi(w) ≤ 0,

where f, g1, . . . , gm are differentiable. Then, there exists α ∈ Rm such that

∇f(w?) +
∑
i∈I αi∇gi(w?) = 0, where I = {i : gi(w

?) = 0}.

15.4 Duality*

Historically, many of the properties of SVM have been obtained by considering

the dual of Equation (15.3). Our presentation of SVM does not rely on duality.

For completeness, we present in the following how to derive the dual of Equa-

tion (15.3).

We start by rewriting the problem in an equivalent form as follows. Consider

the function

g(w) = max
α∈Rm:α≥0

m∑
i=1

αi(1− yi〈w,xi〉) =

{
0 if ∀i, yi〈w,xi〉 ≥ 1

∞ otherwise
.

We can therefore rewrite Equation (15.3) as

min
w

(
‖w‖2 + g(w)

)
. (15.7)

Rearranging the preceding we obtain that Equation (15.3) can be rewritten as

the problem

min
w

max
α∈Rm:α≥0

(
1

2
‖w‖2 +

m∑
i=1

αi(1− yi〈w,xi〉)

)
. (15.8)

Now suppose that we flip the order of min and max in the above equation. This

can only decrease the objective value (see Exercise 4), and we have

min
w

max
α∈Rm:α≥0

(
1

2
‖w‖2 +

m∑
i=1

αi(1− yi〈w,xi〉)

)

≥ max
α∈Rm:α≥0

min
w

(
1

2
‖w‖2 +

m∑
i=1

αi(1− yi〈w,xi〉)

)
.

The preceding inequality is called weak duality. It turns out that in our case,

strong duality also holds; namely, the inequality holds with equality. Therefore,

the dual problem is

max
α∈Rm:α≥0

min
w

(
1

2
‖w‖2 +

m∑
i=1

αi(1− yi〈w,xi〉)

)
. (15.9)

We can simplify the dual problem by noting that once α is fixed, the optimization

212 Support Vector Machines

problem with respect to w is unconstrained and the objective is differentiable;

thus, at the optimum, the gradient equals zero:

w −
m∑
i=1

αiyixi = 0 ⇒ w =

m∑
i=1

αiyixi.

This shows us that the solution must be in the linear span of the examples, a

fact we will use later to derive SVM with kernels. Plugging the preceding into

Equation (15.9) we obtain that the dual problem can be rewritten as

max
α∈Rm:α≥0

1

2

∥∥∥∥∥
m∑
i=1

αiyixi

∥∥∥∥∥
2

+

m∑
i=1

αi

1− yi

〈∑
j

αjyjxj ,xi

〉 . (15.10)

Rearranging yields the dual problem

max
α∈Rm:α≥0

 m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyj〈xj ,xi〉

 . (15.11)

Note that the dual problem only involves inner products between instances and

does not require direct access to specific elements within an instance. This prop-

erty is important when implementing SVM with kernels, as we will discuss in

the next chapter.

15.5 Implementing Soft-SVM Using SGD

In this section we describe a very simple algorithm for solving the optimization

problem of Soft-SVM, namely,

min
w

(
λ

2
‖w‖2 +

1

m

m∑
i=1

max{0, 1− y〈w,xi〉}

)
. (15.12)

We rely on the SGD framework for solving regularized loss minimization prob-

lems, as described in Section 14.5.3.

Recall that, on the basis of Equation (14.15), we can rewrite the update rule

of SGD as

w(t+1) = − 1

λ t

t∑
j=1

vj ,

where vj is a subgradient of the loss function at w(j) on the random example

chosen at iteration j. For the hinge loss, given an example (x, y), we can choose vj
to be 0 if y〈w(j),x〉 ≥ 1 and vj = −y x otherwise (see Example 14.2). Denoting

θ(t) = −
∑
j<t vj we obtain the following procedure.

15.6 Summary 213

SGD for Solving Soft-SVM

goal: Solve Equation (15.12)

parameter: T

initialize: θ(1) = 0

for t = 1, . . . , T

Let w(t) = 1
λ tθ

(t)

Choose i uniformly at random from [m]

If (yi〈w(t),xi〉 < 1)

Set θ(t+1) = θ(t) + yixi
Else

Set θ(t+1) = θ(t)

output: w̄ = 1
T

∑T
t=1 w(t)

15.6 Summary

SVM is an algorithm for learning halfspaces with a certain type of prior knowl-

edge, namely, preference for large margin. Hard-SVM seeks the halfspace that

separates the data perfectly with the largest margin, whereas soft-SVM does

not assume separability of the data and allows the constraints to be violated to

some extent. The sample complexity for both types of SVM is different from the

sample complexity of straightforward halfspace learning, as it does not depend

on the dimension of the domain but rather on parameters such as the maximal

norms of x and w.

The importance of dimension-independent sample complexity will be realized

in the next chapter, where we will discuss the embedding of the given domain

into some high dimensional feature space as means for enriching our hypothesis

class. Such a procedure raises computational and sample complexity problems.

The latter is solved by using SVM, whereas the former can be solved by using

SVM with kernels, as we will see in the next chapter.

15.7 Bibliographic Remarks

SVMs have been introduced in (Cortes & Vapnik 1995, Boser, Guyon & Vapnik

1992). There are many good books on the theoretical and practical aspects of

SVMs. For example, (Vapnik 1995, Cristianini & Shawe-Taylor 2000, Schölkopf

& Smola 2002, Hsu, Chang & Lin 2003, Steinwart & Christmann 2008). Using

SGD for solving soft-SVM has been proposed in Shalev-Shwartz et al. (2007).

214 Support Vector Machines

15.8 Exercises

1. Show that the hard-SVM rule, namely,

argmax
(w,b):‖w‖=1

min
i∈[m]

|〈w,xi〉+ b| s.t. ∀i, yi(〈w,xi〉+ b) > 0,

is equivalent to the following formulation:

argmax
(w,b):‖w‖=1

min
i∈[m]

yi(〈w,xi〉+ b). (15.13)

Hint: Define G = {(w, b) : ∀i, yi(〈w,xi〉+ b) > 0}.
1. Show that

argmax
(w,b):‖w‖=1

min
i∈[m]

yi(〈w,xi〉+ b) ∈ G

2. Show that ∀(w, b) ∈ G,

min
i∈[m]

yi(〈w,xi〉+ b) = min
i∈[m]

|〈w,xi〉+ b|

2. Margin and the Perceptron Consider a training set that is linearly sep-

arable with a margin γ and such that all the instances are within a ball of

radius ρ. Prove that the maximal number of updates the Batch Perceptron

algorithm given in Section 9.1.2 will make when running on this training set

is (ρ/γ)2.

3. Hard versus soft SVM: Prove or refute the following claim:

There exists λ > 0 such that for every sample S of m > 1 examples, which

is separable by the class of homogenous halfspaces, the hard-SVM and the

soft-SVM (with parameter λ) learning rules return exactly the same weight

vector.

4. Weak duality: Prove that for any function f of two vector variables x ∈
X ,y ∈ Y, it holds that

min
x∈X

max
y∈Y

f(x,y) ≥ max
y∈Y

min
x∈X

f(x,y).

16 Kernel Methods

In the previous chapter we described the SVM paradigm for learning halfspaces

in high dimensional feature spaces. This enables us to enrich the expressive

power of halfspaces by first mapping the data into a high dimensional feature

space, and then learning a linear predictor in that space. This is similar to the

AdaBoost algorithm, which learns a composition of a halfspace over base hy-

potheses. While this approach greatly extends the expressiveness of halfspace

predictors, it raises both sample complexity and computational complexity chal-

lenges. In the previous chapter we tackled the sample complexity issue using

the concept of margin. In this chapter we tackle the computational complexity

challenge using the method of kernels.

We start the chapter by describing the idea of embedding the data into a high

dimensional feature space. We then introduce the idea of kernels. A kernel is a

type of a similarity measure between instances. The special property of kernel

similarities is that they can be viewed as inner products in some Hilbert space

(or Euclidean space of some high dimension) to which the instance space is vir-

tually embedded. We introduce the “kernel trick” that enables computationally

efficient implementation of learning, without explicitly handling the high dimen-

sional representation of the domain instances. Kernel based learning algorithms,

and in particular kernel-SVM, are very useful and popular machine learning

tools. Their success may be attributed both to being flexible for accommodating

domain specific prior knowledge and to having a well developed set of efficient

implementation algorithms.

16.1 Embeddings into Feature Spaces

The expressive power of halfspaces is rather restricted – for example, the follow-

ing training set is not separable by a halfspace.

Let the domain be the real line; consider the domain points {−10,−9,−8, . . . , 0,

1, . . . , 9, 10} where the labels are +1 for all x such that |x| > 2 and −1 otherwise.

To make the class of halfspaces more expressive, we can first map the original

instance space into another space (possibly of a higher dimension) and then

learn a halfspace in that space. For example, consider the example mentioned

previously. Instead of learning a halfspace in the original representation let us

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

216 Kernel Methods

first define a mapping ψ : R→ R2 as follows:

ψ(x) = (x, x2).

We use the term feature space to denote the range of ψ. After applying ψ the

data can be easily explained using the halfspace h(x) = sign(〈w, ψ(x)〉 − b),

where w = (0, 1) and b = 5.

The basic paradigm is as follows:

1. Given some domain set X and a learning task, choose a mapping ψ : X → F ,

for some feature space F , that will usually be Rn for some n (however, the

range of such a mapping can be any Hilbert space, including such spaces of

infinite dimension, as we will show later).

2. Given a sequence of labeled examples, S = (x1, y1), . . . , (xm, ym), create the

image sequence Ŝ = (ψ(x1), y1), . . . , (ψ(xm), ym).

3. Train a linear predictor h over Ŝ.

4. Predict the label of a test point, x, to be h(ψ(x)).

Note that, for every probability distribution D over X × Y, we can readily

define its image probability distribution Dψ over F × Y by setting, for every

subset A ⊆ F × Y, Dψ(A) = D(ψ−1(A)).1 It follows that for every predictor h

over the feature space, LDψ (h) = LD(h ◦ψ), where h ◦ψ is the composition of h

onto ψ.

The success of this learning paradigm depends on choosing a good ψ for a

given learning task: that is, a ψ that will make the image of the data distribution

(close to being) linearly separable in the feature space, thus making the resulting

algorithm a good learner for a given task. Picking such an embedding requires

prior knowledge about that task. However, often some generic mappings that

enable us to enrich the class of halfspaces and extend its expressiveness are used.

One notable example is polynomial mappings, which are a generalization of the

ψ we have seen in the previous example.

Recall that the prediction of a standard halfspace classifier on an instance x

is based on the linear mapping x 7→ 〈w,x〉. We can generalize linear mappings

to a polynomial mapping, x 7→ p(x), where p is a multivariate polynomial of

degree k. For simplicity, consider first the case in which x is 1 dimensional.

In that case, p(x) =
∑k
j=0 wjx

j , where w ∈ Rk+1 is the vector of coefficients

of the polynomial we need to learn. We can rewrite p(x) = 〈w, ψ(x)〉 where

ψ : R → Rk+1 is the mapping x 7→ (1, x, x2, x3, . . . , xk). It follows that

learning a k degree polynomial over R can be done by learning a linear mapping

in the (k + 1) dimensional feature space.

More generally, a degree k multivariate polynomial from Rn to R can be writ-

ten as

p(x) =
∑

J∈[n]r:r≤k

wJ

r∏
i=1

xJi . (16.1)

1 This is defined for every A such that ψ−1(A) is measurable with respect to D.

16.2 The Kernel Trick 217

As before, we can rewrite p(x) = 〈w, ψ(x)〉 where now ψ : Rn → Rd is such

that for every J ∈ [n]r, r ≤ k, the coordinate of ψ(x) associated with J is the

monomial
∏r
i=1 xJi .

Naturally, polynomial-based classifiers yield much richer hypothesis classes

than halfspaces. We have seen at the beginning of this chapter an example in

which the training set, in its original domain (X = R), cannot be separable

by a halfspace, but after the embedding x 7→ (x, x2) it is perfectly separable.

So, while the classifier is always linear in the feature space, it can have highly

nonlinear behavior on the original space from which instances were sampled.

In general, we can choose any feature mapping ψ that maps the original in-

stances into some Hilbert space.2 The Euclidean space Rd is a Hilbert space for

any finite d. But there are also infinite dimensional Hilbert spaces (as we shall

see later on in this chapter).

The bottom line of this discussion is that we can enrich the class of halfspaces

by first applying a nonlinear mapping, ψ, that maps the instance space into some

feature space, and then learning a halfspace in that feature space. However, if

the range of ψ is a high dimensional space we face two problems. First, the VC-

dimension of halfspaces in Rn is n + 1, and therefore, if the range of ψ is very

large, we need many more samples in order to learn a halfspace in the range

of ψ. Second, from the computational point of view, performing calculations in

the high dimensional space might be too costly. In fact, even the representation

of the vector w in the feature space can be unrealistic. The first issue can be

tackled using the paradigm of large margin (or low norm predictors), as we

already discussed in the previous chapter in the context of the SVM algorithm.

In the following section we address the computational issue.

16.2 The Kernel Trick

We have seen that embedding the input space into some high dimensional feature

space makes halfspace learning more expressive. However, the computational

complexity of such learning may still pose a serious hurdle – computing linear

separators over very high dimensional data may be computationally expensive.

The common solution to this concern is kernel based learning. The term “kernels”

is used in this context to describe inner products in the feature space. Given

an embedding ψ of some domain space X into some Hilbert space, we define

the kernel function K(x,x′) = 〈ψ(x), ψ(x′)〉. One can think of K as specifying

similarity between instances and of the embedding ψ as mapping the domain set

2 A Hilbert space is a vector space with an inner product, which is also complete. A space is
complete if all Cauchy sequences in the space converge.

In our case, the norm ‖w‖ is defined by the inner product
√
〈w,w〉. The reason we require

the range of ψ to be in a Hilbert space is that projections in a Hilbert space are well
defined. In particular, if M is a linear subspace of a Hilbert space, then every x in the

Hilbert space can be written as a sum x = u + v where u ∈M and 〈v,w〉 = 0 for all

w ∈M . We use this fact in the proof of the representer theorem given in the next section.

218 Kernel Methods

X into a space where these similarities are realized as inner products. It turns

out that many learning algorithms for halfspaces can be carried out just on the

basis of the values of the kernel function over pairs of domain points. The main

advantage of such algorithms is that they implement linear separators in high

dimensional feature spaces without having to specify points in that space or

expressing the embedding ψ explicitly. The remainder of this section is devoted

to constructing such algorithms.

In the previous chapter we saw that regularizing the norm of w yields a small

sample complexity even if the dimensionality of the feature space is high. Inter-

estingly, as we show later, regularizing the norm of w is also helpful in overcoming

the computational problem. To do so, first note that all versions of the SVM op-

timization problem we have derived in the previous chapter are instances of the

following general problem:

min
w

(f (〈w, ψ(x1)〉 , . . . , 〈w, ψ(xm)〉) +R(‖w‖)), (16.2)

where f : Rm → R is an arbitrary function and R : R+ → R is a monotoni-

cally nondecreasing function. For example, Soft-SVM for homogenous halfspaces

(Equation (15.6)) can be derived from Equation (16.2) by letting R(a) = λa2 and

f(a1, . . . , am) = 1
m

∑
i max{0, 1−yiai}. Similarly, Hard-SVM for nonhomogenous

halfspaces (Equation (15.2)) can be derived from Equation (16.2) by letting

R(a) = a2 and letting f(a1, . . . , am) be 0 if there exists b such that yi(ai+b) ≥ 1

for all i, and f(a1, . . . , am) =∞ otherwise.

The following theorem shows that there exists an optimal solution of Equa-

tion (16.2) that lies in the span of {ψ(x1), . . . , ψ(xm)}.

theorem 16.1 (Representer Theorem) Assume that ψ is a mapping from X to

a Hilbert space. Then, there exists a vector α ∈ Rm such that w =
∑m
i=1 αiψ(xi)

is an optimal solution of Equation (16.2).

Proof Let w? be an optimal solution of Equation (16.2). Because w? is an

element of a Hilbert space, we can rewrite w? as

w? =

m∑
i=1

αiψ(xi) + u,

where 〈u, ψ(xi)〉 = 0 for all i. Set w = w? − u. Clearly, ‖w?‖2 = ‖w‖2 + ‖u‖2,

thus ‖w‖ ≤ ‖w?‖. Since R is nondecreasing we obtain that R(‖w‖) ≤ R(‖w?‖).
Additionally, for all i we have that

〈w, ψ(xi)〉 = 〈w? − u, ψ(xi)〉 = 〈w?, ψ(xi)〉,

hence

f (〈w, ψ(x1)〉 , . . . , 〈w, ψ(xm)〉) = f (〈w?, ψ(x1)〉 , . . . , 〈w?, ψ(xm)〉) .

We have shown that the objective of Equation (16.2) at w cannot be larger

than the objective at w? and therefore w is also an optimal solution. Since

w =
∑m
i=1 αiψ(xi) we conclude our proof.

16.2 The Kernel Trick 219

On the basis of the representer theorem we can optimize Equation (16.2) with

respect to the coefficients α instead of the coefficients w as follows. Writing

w =
∑m
j=1 αjψ(xj) we have that for all i

〈w, ψ(xi)〉 =

〈∑
j

αjψ(xj), ψ(xi)

〉
=

m∑
j=1

αj〈ψ(xj), ψ(xi)〉.

Similarly,

‖w‖2 =

〈∑
j

αjψ(xj),
∑
j

αjψ(xj)

〉
=

m∑
i,j=1

αiαj〈ψ(xi), ψ(xj)〉.

Let K(x,x′) = 〈ψ(x), ψ(x′)〉 be a function that implements the kernel function

with respect to the embedding ψ. Instead of solving Equation (16.2) we can solve

the equivalent problem

min
α∈Rm

f

 m∑
j=1

αjK(xj ,x1), . . . ,

m∑
j=1

αjK(xj ,xm)

+R

√√√√ m∑
i,j=1

αiαjK(xj ,xi)

. (16.3)

To solve the optimization problem given in Equation (16.3), we do not need any

direct access to elements in the feature space. The only thing we should know is

how to calculate inner products in the feature space, or equivalently, to calculate

the kernel function. In fact, to solve Equation (16.3) we solely need to know the

value of the m × m matrix G s.t. Gi,j = K(xi,xj), which is often called the

Gram matrix.

In particular, specifying the preceding to the Soft-SVM problem given in Equa-

tion (15.6), we can rewrite the problem as

min
α∈Rm

(
λαTGα+

1

m

m∑
i=1

max
{

0, 1− yi(Gα)i
})

, (16.4)

where (Gα)i is the i’th element of the vector obtained by multiplying the Gram

matrix G by the vector α. Note that Equation (16.4) can be written as quadratic

programming and hence can be solved efficiently. In the next section we describe

an even simpler algorithm for solving Soft-SVM with kernels.

Once we learn the coefficients α we can calculate the prediction on a new

instance by

〈w, ψ(x)〉 =

m∑
j=1

αj〈ψ(xj), ψ(x)〉 =

m∑
j=1

αjK(xj ,x).

The advantage of working with kernels rather than directly optimizing w in

the feature space is that in some situations the dimension of the feature space

220 Kernel Methods

is extremely large while implementing the kernel function is very simple. A few

examples are given in the following.

Example 16.1 (Polynomial Kernels) The k degree polynomial kernel is defined

to be

K(x,x′) = (1 + 〈x,x′〉)k.

Now we will show that this is indeed a kernel function. That is, we will show

that there exists a mapping ψ from the original space to some higher dimensional

space for which K(x,x′) = 〈ψ(x), ψ(x′)〉. For simplicity, denote x0 = x′0 = 1.

Then, we have

K(x,x′) = (1 + 〈x,x′〉)k = (1 + 〈x,x′〉) · · · · · (1 + 〈x,x′〉)

=

 n∑
j=0

xjx
′
j

 · · · · ·
 n∑
j=0

xjx
′
j

=

∑
J∈{0,1,...,n}k

k∏
i=1

xJix
′
Ji

=
∑

J∈{0,1,...,n}k

k∏
i=1

xJi

k∏
i=1

x′Ji .

Now, if we define ψ : Rn → R(n+1)k such that for J ∈ {0, 1, . . . , n}k there is an

element of ψ(x) that equals
∏k
i=1 xJi , we obtain that

K(x,x′) = 〈ψ(x), ψ(x′)〉.

Since ψ contains all the monomials up to degree k, a halfspace over the range

of ψ corresponds to a polynomial predictor of degree k over the original space.

Hence, learning a halfspace with a k degree polynomial kernel enables us to learn

polynomial predictors of degree k over the original space.

Note that here the complexity of implementing K is O(n) while the dimension

of the feature space is on the order of nk.

Example 16.2 (Gaussian Kernel) Let the original instance space be R and

consider the mapping ψ where for each nonnegative integer n ≥ 0 there exists

an element ψ(x)n that equals 1√
n!
e−

x2

2 xn. Then,

〈ψ(x), ψ(x′)〉 =

∞∑
n=0

(
1√
n!
e−

x2

2 xn
) (

1√
n!
e−

(x′)2

2 (x′)n
)

= e−
x2+(x′)2

2

∞∑
n=0

(
(xx′)n

n!

)
= e−

‖x−x′‖2
2 .

Here the feature space is of infinite dimension while evaluating the kernel is very

16.2 The Kernel Trick 221

simple. More generally, given a scalar σ > 0, the Gaussian kernel is defined to

be

K(x,x′) = e−
‖x−x′‖2

2σ .

Intuitively, the Gaussian kernel sets the inner product in the feature space

between x,x′ to be close to zero if the instances are far away from each other

(in the original domain) and close to 1 if they are close. σ is a parameter that

controls the scale determining what we mean by “close.” It is easy to verify that

K implements an inner product in a space in which for any n and any monomial

of order k there exists an element of ψ(x) that equals 1√
n!
e−
‖x‖2

2
∏n
i=1 xJi .

Hence, we can learn any polynomial predictor over the original space by using a

Gaussian kernel.

Recall that the VC-dimension of the class of all polynomial predictors is infi-

nite (see Exercise 12). There is no contradiction, because the sample complexity

required to learn with Gaussian kernels depends on the margin in the feature

space, which will be large if we are lucky, but can in general be arbitrarily small.

The Gaussian kernel is also called the RBF kernel, for “Radial Basis Func-

tions.”

16.2.1 Kernels as a Way to Express Prior Knowledge

As we discussed previously, a feature mapping, ψ, may be viewed as expanding

the class of linear classifiers to a richer class (corresponding to linear classifiers

over the feature space). However, as discussed in the book so far, the suitability

of any hypothesis class to a given learning task depends on the nature of that

task. One can therefore think of an embedding ψ as a way to express and utilize

prior knowledge about the problem at hand. For example, if we believe that

positive examples can be distinguished by some ellipse, we can define ψ to be all

the monomials up to order 2, or use a degree 2 polynomial kernel.

As a more realistic example, consider the task of learning to find a sequence of

characters (“signature”) in a file that indicates whether it contains a virus or not.

Formally, let Xd be the set of all strings of length at most d over some alphabet

set Σ. The hypothesis class that one wishes to learn is H = {hv : v ∈ Xd}, where,

for a string x ∈ Xd, hv(x) is 1 iff v is a substring of x (and hv(x) = −1 otherwise).

Let us show how using an appropriate embedding this class can be realized by

linear classifiers over the resulting feature space. Consider a mapping ψ to a space

Rs where s = |Xd|, so that each coordinate of ψ(x) corresponds to some string v

and indicates whether v is a substring of x (that is, for every x ∈ Xd, ψ(x) is a

vector in {0, 1}|Xd|). Note that the dimension of this feature space is exponential

in d. It is not hard to see that every member of the class H can be realized by

composing a linear classifier over ψ(x), and, moreover, by such a halfspace whose

norm is 1 and that attains a margin of 1 (see Exercise 1). Furthermore, for every

x ∈ X , ‖ψ(x)‖ = O(d). So, overall, it is learnable using SVM with a sample

222 Kernel Methods

complexity that is polynomial in d. However, the dimension of the feature space

is exponential in d so a direct implementation of SVM over the feature space is

problematic. Luckily, it is easy to calculate the inner product in the feature space

(i.e., the kernel function) without explicitly mapping instances into the feature

space. Indeed, K(x, x′) is simply the number of common substrings of x and x′,

which can be easily calculated in time polynomial in d.

This example also demonstrates how feature mapping enables us to use halfspaces

for nonvectorial domains.

16.2.2 Characterizing Kernel Functions*

As we have discussed in the previous section, we can think of the specification of

the kernel matrix as a way to express prior knowledge. Consider a given similarity

function of the form K : X ×X → R. Is it a valid kernel function? That is, does

it represent an inner product between ψ(x) and ψ(x′) for some feature mapping

ψ? The following lemma gives a sufficient and necessary condition.

lemma 16.2 A symmetric function K : X × X → R implements an inner

product in some Hilbert space if and only if it is positive semidefinite; namely,

for all x1, . . . ,xm, the Gram matrix, Gi,j = K(xi,xj), is a positive semidefinite

matrix.

Proof It is trivial to see that if K implements an inner product in some Hilbert

space then the Gram matrix is positive semidefinite. For the other direction,

define the space of functions over X as RX = {f : X → R}. For each x ∈ X
let ψ(x) be the function x 7→ K(·,x). Define a vector space by taking all linear

combinations of elements of the form K(·,x). Define an inner product on this

vector space to be〈∑
i

αiK(·,xi),
∑
j

βjK(·,x′j)

〉
=
∑
i,j

αiβjK(xi,x
′
j).

This is a valid inner product since it is symmetric (because K is symmetric), it is

linear (immediate), and it is positive definite (it is easy to see that K(x,x) ≥ 0

with equality only for ψ(x) being the zero function). Clearly,

〈ψ(x), ψ(x′)〉 = 〈K(·,x),K(·,x′)〉 = K(x,x′),

which concludes our proof.

16.3 Implementing Soft-SVM with Kernels

Next, we turn to solving Soft-SVM with kernels. While we could have designed

an algorithm for solving Equation (16.4), there is an even simpler approach that

16.3 Implementing Soft-SVM with Kernels 223

directly tackles the Soft-SVM optimization problem in the feature space,

min
w

(
λ

2
‖w‖2 +

1

m

m∑
i=1

max{0, 1− y〈w, ψ(xi)〉}

)
, (16.5)

while only using kernel evaluations. The basic observation is that the vector w(t)

maintained by the SGD procedure we have described in Section 15.5 is always in

the linear span of {ψ(x1), . . . , ψ(xm)}. Therefore, rather than maintaining w(t)

we can maintain the corresponding coefficients α.

Formally, let K be the kernel function, namely, for all x,x′, K(x,x′) =

〈ψ(x), ψ(x′)〉. We shall maintain two vectors in Rm, corresponding to two vectors

θ(t) and w(t) defined in the SGD procedure of Section 15.5. That is, β(t) will be

a vector such that

θ(t) =

m∑
j=1

β
(t)
j ψ(xj) (16.6)

and α(t) be such that

w(t) =

m∑
j=1

α
(t)
j ψ(xj). (16.7)

The vectors β and α are updated according to the following procedure.

SGD for Solving Soft-SVM with Kernels

Goal: Solve Equation (16.5)

parameter: T

Initialize: β(1) = 0

for t = 1, . . . , T

Let α(t) = 1
λ tβ

(t)

Choose i uniformly at random from [m]

For all j 6= i set β
(t+1)
j = β

(t)
j

If (yi
∑m
j=1 α

(t)
j K(xj ,xi) < 1)

Set β
(t+1)
i = β

(t)
i + yi

Else

Set β
(t+1)
i = β

(t)
i

Output: w̄ =
∑m
j=1 ᾱjψ(xj) where ᾱ = 1

T

∑T
t=1α

(t)

The following lemma shows that the preceding implementation is equivalent

to running the SGD procedure described in Section 15.5 on the feature space.

lemma 16.3 Let ŵ be the output of the SGD procedure described in Sec-

tion 15.5, when applied on the feature space, and let w̄ =
∑m
j=1 ᾱjψ(xj) be

the output of applying SGD with kernels. Then w̄ = ŵ.

Proof We will show that for every t Equation (16.6) holds, where θ(t) is the

result of running the SGD procedure described in Section 15.5 in the feature

224 Kernel Methods

space. By the definition of α(t) = 1
λ tβ

(t) and w(t) = 1
λ tθ

(t), this claim implies

that Equation (16.7) also holds, and the proof of our lemma will follow. To prove

that Equation (16.6) holds we use a simple inductive argument. For t = 1 the

claim trivially holds. Assume it holds for t ≥ 1. Then,

yi

〈
w(t), ψ(xi)

〉
= yi

〈∑
j

α
(t)
j ψ(xj), ψ(xi)

〉
= yi

m∑
j=1

α
(t)
j K(xj ,xi).

Hence, the condition in the two algorithms is equivalent and if we update θ we

have

θ(t+1) = θ(t) + yiψ(xi) =

m∑
j=1

β
(t)
j ψ(xj) + yiψ(xi) =

m∑
j=1

β
(t+1)
j ψ(xj),

which concludes our proof.

16.4 Summary

Mappings from the given domain to some higher dimensional space, on which a

halfspace predictor is used, can be highly powerful. We benefit from a rich and

complex hypothesis class, yet need to solve the problems of high sample and

computational complexities. In Chapter 10, we discussed the AdaBoost algo-

rithm, which faces these challenges by using a weak learner: Even though we’re

in a very high dimensional space, we have an “oracle” that bestows on us a

single good coordinate to work with on each iteration. In this chapter we intro-

duced a different approach, the kernel trick. The idea is that in order to find a

halfspace predictor in the high dimensional space, we do not need to know the

representation of instances in that space, but rather the values of inner products

between the mapped instances. Calculating inner products between instances in

the high dimensional space without using their representation in that space is

done using kernel functions. We have also shown how the SGD algorithm can be

implemented using kernels.

The ideas of feature mapping and the kernel trick allow us to use the framework

of halfspaces and linear predictors for nonvectorial data. We demonstrated how

kernels can be used to learn predictors over the domain of strings.

We presented the applicability of the kernel trick in SVM. However, the kernel

trick can be applied in many other algorithms. A few examples are given as

exercises.

This chapter ends the series of chapters on linear predictors and convex prob-

lems. The next two chapters deal with completely different types of hypothesis

classes.

16.5 Bibliographic Remarks 225

16.5 Bibliographic Remarks

In the context of SVM, the kernel-trick has been introduced in Boser et al. (1992).

See also Aizerman, Braverman & Rozonoer (1964). The observation that the

kernel-trick can be applied whenever an algorithm only relies on inner products

was first stated by Schölkopf, Smola & Müller (1998). The proof of the representer

theorem is given in (Schölkopf, Herbrich, Smola & Williamson 2000, Schölkopf,

Herbrich & Smola 2001). The conditions stated in Lemma 16.2 are simplification

of conditions due to Mercer. Many useful kernel functions have been introduced

in the literature for various applications. We refer the reader to Schölkopf &

Smola (2002).

16.6 Exercises

1. Consider the task of finding a sequence of characters in a file, as described

in Section 16.2.1. Show that every member of the class H can be realized by

composing a linear classifier over ψ(x), whose norm is 1 and that attains a

margin of 1.

2. Kernelized Perceptron: Show how to run the Perceptron algorithm while

only accessing the instances via the kernel function. Hint: The derivation is

similar to the derivation of implementing SGD with kernels.

3. Kernel Ridge Regression: The ridge regression problem, with a feature

mapping ψ, is the problem of finding a vector w that minimizes the function

f(w) = λ ‖w‖2 +
1

2m

m∑
i=1

(〈w, ψ(xi)〉 − yi)2, (16.8)

and then returning the predictor

h(x) = 〈w,x〉.

Show how to implement the ridge regression algorithm with kernels.

Hint: The representer theorem tells us that there exists a vector α ∈ Rm
such that

∑m
i=1 αiψ(xi) is a minimizer of Equation (16.8).

1. Let G be the Gram matrix with regard to S and K. That is, Gij =

K(xi,xj). Define g : Rm → R by

g(α) = λ ·αTGα+
1

2m

m∑
i=1

(〈α, G·,i〉 − yi)2, (16.9)

where G·,i is the i’th column of G. Show that if α∗ minimizes Equa-

tion (16.9) then w∗ =
∑m
i=1 α

∗
iψ(xi) is a minimizer of f .

2. Find a closed form expression for α∗.

4. Let N be any positive integer. For every x, x′ ∈ {1, . . . , N} define

K(x, x′) = min{x, x′}.

226 Kernel Methods

Prove that K is a valid kernel; namely, find a mapping ψ : {1, . . . , N} → H

where H is some Hilbert space, such that

∀x, x′ ∈ {1, . . . , N}, K(x, x′) = 〈ψ(x), ψ(x′)〉.

5. A supermarket manager would like to learn which of his customers have babies

on the basis of their shopping carts. Specifically, he sampled i.i.d. customers,

where for customer i, let xi ⊂ {1, . . . , d} denote the subset of items the

customer bought, and let yi ∈ {±1} be the label indicating whether this

customer has a baby. As prior knowledge, the manager knows that there are

k items such that the label is determined to be 1 iff the customer bought

at least one of these k items. Of course, the identity of these k items is not

known (otherwise, there was nothing to learn). In addition, according to the

store regulation, each customer can buy at most s items. Help the manager to

design a learning algorithm such that both its time complexity and its sample

complexity are polynomial in s, k, and 1/ε.

6. Let X be an instance set and let ψ be a feature mapping of X into some

Hilbert feature space V . Let K : X × X → R be a kernel function that

implements inner products in the feature space V .

Consider the binary classification algorithm that predicts the label of

an unseen instance according to the class with the closest average. Formally,

given a training sequence S = (x1, y1), . . . , (xm, ym), for every y ∈ {±1} we

define

cy =
1

my

∑
i:yi=y

ψ(xi).

where my = |{i : yi = y}|. We assume that m+ and m− are nonzero. Then,

the algorithm outputs the following decision rule:

h(x) =

{
1 ‖ψ(x)− c+‖ ≤ ‖ψ(x)− c−‖
0 otherwise.

1. Let w = c+ − c− and let b = 1
2 (‖c−‖2 − ‖c+‖2). Show that

h(x) = sign(〈w, ψ(x)〉+ b).

2. Show how to express h(x) on the basis of the kernel function, and without

accessing individual entries of ψ(x) or w.

17 Multiclass, Ranking, and Complex
Prediction Problems

Multiclass categorization is the problem of classifying instances into one of several

possible target classes. That is, we are aiming at learning a predictor h : X → Y,

where Y is a finite set of categories. Applications include, for example, catego-

rizing documents according to topic (X is the set of documents and Y is the set

of possible topics) or determining which object appears in a given image (X is

the set of images and Y is the set of possible objects).

The centrality of the multiclass learning problem has spurred the development

of various approaches for tackling the task. Perhaps the most straightforward

approach is a reduction from multiclass classification to binary classification. In

Section 17.1 we discuss the most common two reductions as well as the main

drawback of the reduction approach.

We then turn to describe a family of linear predictors for multiclass problems.

Relying on the RLM and SGD frameworks from previous chapters, we describe

several practical algorithms for multiclass prediction.

In Section 17.3 we show how to use the multiclass machinery for complex pre-

diction problems in which Y can be extremely large but has some structure on

it. This task is often called structured output learning. In particular, we demon-

strate this approach for the task of recognizing handwritten words, in which Y
is the set of all possible strings of some bounded length (hence, the size of Y is

exponential in the maximal length of a word).

Finally, in Section 17.4 and Section 17.5 we discuss ranking problems in which

the learner should order a set of instances according to their “relevance.” A typ-

ical application is ordering results of a search engine according to their relevance

to the query. We describe several performance measures that are adequate for

assessing the performance of ranking predictors and describe how to learn linear

predictors for ranking problems efficiently.

17.1 One-versus-All and All-Pairs

The simplest approach to tackle multiclass prediction problems is by reduction

to binary classification. Recall that in multiclass prediction we would like to learn

a function h : X → Y. Without loss of generality let us denote Y = {1, . . . , k}.
In the One-versus-All method (a.k.a. One-versus-Rest) we train k binary clas-

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

228 Multiclass, Ranking, and Complex Prediction Problems

sifiers, each of which discriminates between one class and the rest of the classes.

That is, given a training set S = (x1, y1), . . . , (xm, ym), where every yi is in Y, we

construct k binary training sets, S1, . . . , Sk, where Si = (x1, (−1)1[y1 6=i]), . . . , (xm, (−1)1[ym 6=i]).

In words, Si is the set of instances labeled 1 if their label in S was i, and −1

otherwise. For every i ∈ [k] we train a binary predictor hi : X → {±1} based on

Si, hoping that hi(x) should equal 1 if and only if x belongs to class i. Then,

given h1, . . . , hk, we construct a multiclass predictor using the rule

h(x) ∈ argmax
i∈[k]

hi(x). (17.1)

When more than one binary hypothesis predicts “1” we should somehow decide

which class to predict (e.g., we can arbitrarily decide to break ties by taking the

minimal index in argmaxi hi(x)). A better approach can be applied whenever

each hi hides additional information, which can be interpreted as the confidence

in the prediction y = i. For example, this is the case in halfspaces, where the

actual prediction is sign(〈w, x〉), but we can interpret 〈w, x〉 as the confidence

in the prediction. In such cases, we can apply the multiclass rule given in Equa-

tion (17.1) on the real valued predictions. A pseudocode of the One-versus-All

approach is given in the following.

One-versus-All

input:

training set S = (x1, y1), . . . , (xm, ym)

algorithm for binary classification A

foreach i ∈ Y
let Si = (x1, (−1)1[y1 6=i]), . . . , (xm, (−1)1[ym 6=i])

let hi = A(Si)

output:

the multiclass hypothesis defined by h(x) ∈ argmaxi∈Y hi(x)

Another popular reduction is the All-Pairs approach, in which all pairs of

classes are compared to each other. Formally, given a training set S = (x1, y1), . . . , (xm, ym),

where every yi is in [k], for every 1 ≤ i < j ≤ k we construct a binary training

sequence, Si,j , containing all examples from S whose label is either i or j. For

each such an example, we set the binary label in Si,j to be +1 if the multiclass

label in S is i and −1 if the multiclass label in S is j. Next, we train a binary

classification algorithm based on every Si,j to get hi,j . Finally, we construct

a multiclass classifier by predicting the class that had the highest number of

“wins.” A pseudocode of the All-Pairs approach is given in the following.

17.1 One-versus-All and All-Pairs 229

All-Pairs

input:

training set S = (x1, y1), . . . , (xm, ym)

algorithm for binary classification A

foreach i, j ∈ Y s.t. i < j

initialize Si,j to be the empty sequence

for t = 1, . . . ,m

If yt = i add (xt, 1) to Si,j
If yt = j add (xt,−1) to Si,j

let hi,j = A(Si,j)

output:

the multiclass hypothesis defined by

h(x) ∈ argmaxi∈Y

(∑
j∈Y sign(j − i)hi,j(x)

)
Although reduction methods such as the One-versus-All and All-Pairs are

simple and easy to construct from existing algorithms, their simplicity has a

price. The binary learner is not aware of the fact that we are going to use its

output hypotheses for constructing a multiclass predictor, and this might lead

to suboptimal results, as illustrated in the following example.

Example 17.1 Consider a multiclass categorization problem in which the in-

stance space is X = R2 and the label set is Y = {1, 2, 3}. Suppose that instances

of the different classes are located in nonintersecting balls as depicted in the fol-

lowing.

1 2 3

Suppose that the probability masses of classes 1, 2, 3 are 40%, 20%, and 40%,

respectively. Consider the application of One-versus-All to this problem, and as-

sume that the binary classification algorithm used by One-versus-All is ERM

with respect to the hypothesis class of halfspaces. Observe that for the prob-

lem of discriminating between class 2 and the rest of the classes, the optimal

halfspace would be the all negative classifier. Therefore, the multiclass predic-

tor constructed by One-versus-All might err on all the examples from class 2

(this will be the case if the tie in the definition of h(x) is broken by the nu-

merical value of the class label). In contrast, if we choose hi(x) = 〈wi,x〉,
where w1 =

(
− 1√

2
, 1√

2

)
, w2 = (0, 1), and w3 =

(
1√
2
, 1√

2

)
, then the classi-

fier defined by h(x) = argmaxi hi(x) perfectly predicts all the examples. We see

230 Multiclass, Ranking, and Complex Prediction Problems

that even though the approximation error of the class of predictors of the form

h(x) = argmaxi〈wi,x〉 is zero, the One-versus-All approach might fail to find a

good predictor from this class.

17.2 Linear Multiclass Predictors

In light of the inadequacy of reduction methods, in this section we study a more

direct approach for learning multiclass predictors. We describe the family of

linear multiclass predictors. To motivate the construction of this family, recall

that a linear predictor for binary classification (i.e., a halfspace) takes the form

h(x) = sign(〈w,x〉).

An equivalent way to express the prediction is as follows:

h(x) = argmax
y∈{±1}

〈w, yx〉,

where yx is the vector obtained by multiplying each element of x by y.

This representation leads to a natural generalization of halfspaces to multiclass

problems as follows. Let Ψ : X × Y → Rd be a class-sensitive feature mapping.

That is, Ψ takes as input a pair (x, y) and maps it into a d dimensional feature

vector. Intuitively, we can think of the elements of Ψ(x, y) as score functions that

assess how well the label y fits the instance x. We will elaborate on Ψ later on.

Given Ψ and a vector w ∈ Rd, we can define a multiclass predictor, h : X → Y,

as follows:

h(x) = argmax
y∈Y

〈w,Ψ(x, y)〉.

That is, the prediction of h for the input x is the label that achieves the highest

weighted score, where weighting is according to the vector w.

Let W be some set of vectors in Rd, for example, W = {w ∈ Rd : ‖w‖ ≤ B},
for some scalar B > 0. Each pair (Ψ,W) defines a hypothesis class of multiclass

predictors:

HΨ,W = {x 7→ argmax
y∈Y

〈w,Ψ(x, y)〉 : w ∈W}.

Of course, the immediate question, which we discuss in the sequel, is how to

construct a good Ψ. Note that if Y = {±1} and we set Ψ(x, y) = yx and

W = Rd, then HΨ,W becomes the hypothesis class of homogeneous halfspace

predictors for binary classification.

17.2.1 How to Construct Ψ

As mentioned before, we can think of the elements of Ψ(x, y) as score functions

that assess how well the label y fits the instance x. Naturally, designing a good Ψ

is similar to the problem of designing a good feature mapping (as we discussed in

17.2 Linear Multiclass Predictors 231

Chapter 16 and as we will discuss in more detail in Chapter 25). Two examples

of useful constructions are given in the following.

The Multivector Construction:
Let Y = {1, . . . , k} and let X = Rn. We define Ψ : X × Y → Rd, where d = nk,

as follows

Ψ(x, y) = [0, . . . , 0︸ ︷︷ ︸
∈R(y−1)n

, x1, . . . , xn︸ ︷︷ ︸
∈Rn

, 0, . . . , 0︸ ︷︷ ︸
∈R(k−y)n

]. (17.2)

That is, Ψ(x, y) is composed of k vectors, each of which is of dimension n, where

we set all the vectors to be the all zeros vector except the y’th vector, which is

set to be x. It follows that we can think of w ∈ Rnk as being composed of k

weight vectors in Rn, that is, w = [w1; . . . ; wk], hence the name multivec-

tor construction. By the construction we have that 〈w,Ψ(x, y)〉 = 〈wy,x〉, and

therefore the multiclass prediction becomes

h(x) = argmax
y∈Y

〈wy,x〉.

A geometric illustration of the multiclass prediction over X = R2 is given in the

following.

w1

w2

w3 w4

TF-IDF:
The previous definition of Ψ(x, y) does not incorporate any prior knowledge

about the problem. We next describe an example of a feature function Ψ that

does incorporate prior knowledge. Let X be a set of text documents and Y be a

set of possible topics. Let d be a size of a dictionary of words. For each word in the

dictionary, whose corresponding index is j, let TF (j,x) be the number of times

the word corresponding to j appears in the document x. This quantity is called

Term-Frequency. Additionally, let DF (j, y) be the number of times the word

corresponding to j appears in documents in our training set that are not about

topic y. This quantity is called Document-Frequency and measures whether word

j is frequent in other topics. Now, define Ψ : X × Y → Rd to be such that

Ψj(x, y) = TF (j,x) log
(

m
DF (j,y)

)
,

where m is the total number of documents in our training set. The preced-

ing quantity is called term-frequency-inverse-document-frequency or TF-IDF for

232 Multiclass, Ranking, and Complex Prediction Problems

short. Intuitively, Ψj(x, y) should be large if the word corresponding to j ap-

pears a lot in the document x but does not appear at all in documents that are

not on topic y. If this is the case, we tend to believe that the document x is on

topic y. Note that unlike the multivector construction described previously, in

the current construction the dimension of Ψ does not depend on the number of

topics (i.e., the size of Y).

17.2.2 Cost-Sensitive Classification

So far we used the zero-one loss as our performance measure of the quality of

h(x). That is, the loss of a hypothesis h on an example (x, y) is 1 if h(x) 6= y and

0 otherwise. In some situations it makes more sense to penalize different levels

of loss for different mistakes. For example, in object recognition tasks, it is less

severe to predict that an image of a tiger contains a cat than predicting that

the image contains a whale. This can be modeled by specifying a loss function,

∆ : Y × Y → R+, where for every pair of labels, y′, y, the loss of predicting

the label y′ when the correct label is y is defined to be ∆(y′, y). We assume

that ∆(y, y) = 0. Note that the zero-one loss can be easily modeled by setting

∆(y′, y) = 1[y′ 6=y].

17.2.3 ERM

We have defined the hypothesis class HΨ,W and specified a loss function ∆. To

learn the class with respect to the loss function, we can apply the ERM rule with

respect to this class. That is, we search for a multiclass hypothesis h ∈ HΨ,W ,

parameterized by a vector w, that minimizes the empirical risk with respect to

∆,

LS(h) =
1

m

m∑
i=1

∆(h(xi), yi).

We now show that when W = Rd and we are in the realizable case, then it is

possible to solve the ERM problem efficiently using linear programming. Indeed,

in the realizable case, we need to find a vector w ∈ Rd that satisfies

∀i ∈ [m], yi = argmax
y∈Y

〈w,Ψ(xi, y)〉.

Equivalently, we need that w will satisfy the following set of linear inequalities

∀i ∈ [m], ∀y ∈ Y \ {yi}, 〈w,Ψ(xi, yi)〉 > 〈w,Ψ(xi, y)〉.

Finding w that satisfies the preceding set of linear equations amounts to solving

a linear program.

As in the case of binary classification, it is also possible to use a generalization

of the Perceptron algorithm for solving the ERM problem. See Exercise 2.

In the nonrealizable case, solving the ERM problem is in general computa-

tionally hard. We tackle this difficulty using the method of convex surrogate

17.2 Linear Multiclass Predictors 233

loss functions (see Section 12.3). In particular, we generalize the hinge loss to

multiclass problems.

17.2.4 Generalized Hinge Loss

Recall that in binary classification, the hinge loss is defined to be max{0, 1 −
y〈w,x〉}. We now generalize the hinge loss to multiclass predictors of the form

hw(x) = argmax
y′∈Y

〈w,Ψ(x,y′)〉.

Recall that a surrogate convex loss should upper bound the original nonconvex

loss, which in our case is ∆(hw(x), y). To derive an upper bound on ∆(hw(x), y)

we first note that the definition of hw(x) implies that

〈w,Ψ(x, y)〉 ≤ 〈w,Ψ(x, hw(x))〉.

Therefore,

∆(hw(x), y) ≤ ∆(hw(x), y) + 〈w,Ψ(x, hw(x))−Ψ(x, y)〉.

Since hw(x) ∈ Y we can upper bound the right-hand side of the preceding by

max
y′∈Y

(∆(y′, y) + 〈w,Ψ(x, y′)−Ψ(x, y)〉) def
= `(w, (x, y)). (17.3)

We use the term “generalized hinge loss” to denote the preceding expression. As

we have shown, `(w, (x, y)) ≥ ∆(hw(x), y). Furthermore, equality holds when-

ever the score of the correct label is larger than the score of any other label, y′,

by at least ∆(y′, y), namely,

∀y′ ∈ Y \ {y}, 〈w,Ψ(x,y)〉 ≥ 〈w,Ψ(x,y′)〉+ ∆(y′, y).

It is also immediate to see that `(w, (x, y)) is a convex function with respect to w

since it is a maximum over linear functions of w (see Claim 12.5 in Chapter 12),

and that `(w, (x, y)) is ρ-Lipschitz with ρ = maxy′∈Y ‖Ψ(x, y′)−Ψ(x, y)‖.
Remark 17.2 We use the name “generalized hinge loss” since in the binary

case, when Y = {±1}, if we set Ψ(x, y) = yx
2 , then the generalized hinge loss

becomes the vanilla hinge loss for binary classification,

`(w, (x, y)) = max{0, 1− y〈w,x〉}.

Geometric Intuition:
The feature function Ψ : X × Y → Rd maps each x into |Y| vectors in Rd.
The value of `(w, (x, y)) will be zero if there exists a direction w such that

when projecting the |Y| vectors onto this direction we obtain that each vector is

represented by the scalar 〈w,Ψ(x, y)〉, and we can rank the different points on

the basis of these scalars so that

• The point corresponding to the correct y is top-ranked

234 Multiclass, Ranking, and Complex Prediction Problems

• For each y′ 6= y, the difference between 〈w,Ψ(x, y)〉 and 〈w,Ψ(x, y′)〉 is larger

than the loss of predicting y′ instead of y. The difference 〈w,Ψ(x, y)〉 −
〈w,Ψ(x, y′)〉 is also referred to as the “margin” (see Section 15.1).

This is illustrated in the following figure:

w
Ψ(x, y)

Ψ(x, y′)

Ψ(x, y′′) ≥
∆

(y, y ′
)

≥
∆

(y
, y
′′)

17.2.5 Multiclass SVM and SGD

Once we have defined the generalized hinge loss, we obtain a convex-Lipschitz

learning problem and we can apply our general techniques for solving such prob-

lems. In particular, the RLM technique we have studied in Chapter 13 yields the

multiclass SVM rule:

Multiclass SVM

input: (x1, y1), . . . , (xm, ym)

parameters:

regularization parameter λ > 0

loss function ∆ : Y × Y → R+

class-sensitive feature mapping Ψ : X × Y → Rd
solve:

min
w∈Rd

(
λ‖w‖2 +

1

m

m∑
i=1

max
y′∈Y

(∆(y′, yi) + 〈w,Ψ(xi, y
′)−Ψ(xi, yi)〉)

)

output the predictor hw(x) = argmaxy∈Y〈w,Ψ(x, y)〉

We can solve the optimization problem associated with multiclass SVM us-

ing generic convex optimization algorithms (or using the method described in

Section 15.5). Let us analyze the risk of the resulting hypothesis. The analysis

seamlessly follows from our general analysis for convex-Lipschitz problems given

in Chapter 13. In particular, applying Corollary 13.8 and using the fact that the

generalized hinge loss upper bounds the ∆ loss, we immediately obtain an analog

of Corollary 15.7:

corollary 17.1 Let D be a distribution over X × Y, let Ψ : X × Y → Rd,

and assume that for all x ∈ X and y ∈ Y we have ‖Ψ(x, y)‖ ≤ ρ/2. Let B > 0.

17.2 Linear Multiclass Predictors 235

Consider running Multiclass SVM with λ =
√

2ρ2

B2m on a training set S ∼ Dm
and let hw be the output of Multiclass SVM. Then,

E
S∼Dm

[L∆
D(hw)] ≤ E

S∼Dm
[Lg−hinge
D (w)] ≤ min

u:‖u‖≤B
Lg−hinge
D (u) +

√
8ρ2B2

m
,

where L∆
D(h) = E(x,y)∼D[∆(h(x), y)] and Lg−hinge

D (w) = E(x,y)∼D[`(w, (x, y))]

with ` being the generalized hinge-loss as defined in Equation (17.3).

We can also apply the SGD learning framework for minimizing Lg−hinge
D (w) as

described in Chapter 14. Recall Claim 14.6, which dealt with subgradients of max

functions. In light of this claim, in order to find a subgradient of the generalized

hinge loss all we need to do is to find y ∈ Y that achieves the maximum in the

definition of the generalized hinge loss. This yields the following algorithm:

SGD for Multiclass Learning

parameters:

Scalar η > 0, integer T > 0

loss function ∆ : Y × Y → R+

class-sensitive feature mapping Ψ : X × Y → Rd
initialize: w(1) = 0 ∈ Rd
for t = 1, 2, . . . , T

sample (x, y) ∼ D
find ŷ ∈ argmaxy′∈Y

(
∆(y′, y) + 〈w(t),Ψ(x, y′)−Ψ(x, y)〉

)
set vt = Ψ(x, ŷ)−Ψ(x, y)

update w(t+1) = w(t) − ηvt
output w̄ = 1

T

∑T
t=1 w(t)

Our general analysis of SGD given in Corollary 14.12 immediately implies:

corollary 17.2 Let D be a distribution over X × Y, let Ψ : X × Y → Rd,

and assume that for all x ∈ X and y ∈ Y we have ‖Ψ(x, y)‖ ≤ ρ/2. Let B > 0.

Then, for every ε > 0, if we run SGD for multiclass learning with a number of

iterations (i.e., number of examples)

T ≥ B2ρ2

ε2

and with η =
√

B2

ρ2 T , then the output of SGD satisfies

E
S∼Dm

[L∆
D(hw̄)] ≤ E

S∼Dm
[Lg−hinge
D (w̄)] ≤ min

u:‖u‖≤B
Lg−hinge
D (u) + ε.

Remark 17.3 It is interesting to note that the risk bounds given in Corol-

lary 17.1 and Corollary 17.2 do not depend explicitly on the size of the label

set Y, a fact we will rely on in the next section. However, the bounds may de-

pend implicitly on the size of Y via the norm of Ψ(x, y) and the fact that the

bounds are meaningful only when there exists some vector u, ‖u‖ ≤ B, for which

Lg−hinge
D (u) is not excessively large.

236 Multiclass, Ranking, and Complex Prediction Problems

17.3 Structured Output Prediction

Structured output prediction problems are multiclass problems in which Y is

very large but is endowed with a predefined structure. The structure plays a

key role in constructing efficient algorithms. To motivate structured learning

problems, consider the problem of optical character recognition (OCR). Suppose

we receive an image of some handwritten word and would like to predict which

word is written in the image. To simplify the setting, suppose we know how to

segment the image into a sequence of images, each of which contains a patch of

the image corresponding to a single letter. Therefore, X is the set of sequences

of images and Y is the set of sequences of letters. Note that the size of Y grows

exponentially with the maximal length of a word. An example of an image x

corresponding to the label y = “workable” is given in the following.

To tackle structure prediction we can rely on the family of linear predictors

described in the previous section. In particular, we need to define a reasonable

loss function for the problem, ∆, as well as a good class-sensitive feature mapping,

Ψ. By “good” we mean a feature mapping that will lead to a low approximation

error for the class of linear predictors with respect to Ψ and ∆. Once we do this,

we can rely, for example, on the SGD learning algorithm defined in the previous

section.

However, the huge size of Y poses several challenges:

1. To apply the multiclass prediction we need to solve a maximization problem

over Y. How can we predict efficiently when Y is so large?

2. How do we train w efficiently? In particular, to apply the SGD rule we again

need to solve a maximization problem over Y.

3. How can we avoid overfitting?

In the previous section we have already shown that the sample complexity of

learning a linear multiclass predictor does not depend explicitly on the number

of classes. We just need to make sure that the norm of the range of Ψ is not too

large. This will take care of the overfitting problem. To tackle the computational

challenges we rely on the structure of the problem, and define the functions Ψ and

∆ so that calculating the maximization problems in the definition of hw and in

the SGD algorithm can be performed efficiently. In the following we demonstrate

one way to achieve these goals for the OCR task mentioned previously.

To simplify the presentation, let us assume that all the words in Y are of length

r and that the number of different letters in our alphabet is q. Let y and y′ be two

17.3 Structured Output Prediction 237

words (i.e., sequences of letters) in Y. We define the function ∆(y′,y) to be the

average number of letters that are different in y′ and y, namely, 1
r

∑r
i=1 1[yi 6=y′i].

Next, let us define a class-sensitive feature mapping Ψ(x,y). It will be conve-

nient to think about x as a matrix of size n× r, where n is the number of pixels

in each image, and r is the number of images in the sequence. The j’th column

of x corresponds to the j’th image in the sequence (encoded as a vector of gray

level values of pixels). The dimension of the range of Ψ is set to be d = n q+ q2.

The first nq feature functions are “type 1” features and take the form:

Ψi,j,1(x,y) =
1

r

r∑
t=1

xi,t 1[yt=j].

That is, we sum the value of the i’th pixel only over the images for which y

assigns the letter j. The triple index (i, j, 1) indicates that we are dealing with

feature (i, j) of type 1. Intuitively, such features can capture pixels in the image

whose gray level values are indicative of a certain letter. The second type of

features take the form

Ψi,j,2(x,y) =
1

r

r∑
t=2

1[yt=i] 1[yt−1=j].

That is, we sum the number of times the letter i follows the letter j. Intuitively,

these features can capture rules like “It is likely to see the pair ‘qu’ in a word”

or “It is unlikely to see the pair ‘rz’ in a word.” Of course, some of these features

will not be very useful, so the goal of the learning process is to assign weights to

features by learning the vector w, so that the weighted score will give us a good

prediction via

hw(x) = argmax
y∈Y

〈w,Ψ(x,y)〉.

It is left to show how to solve the optimization problem in the definition

of hw(x) efficiently, as well as how to solve the optimization problem in the

definition of ŷ in the SGD algorithm. We can do this by applying a dynamic

programming procedure. We describe the procedure for solving the maximization

in the definition of hw and leave as an exercise the maximization problem in the

definition of ŷ in the SGD algorithm.

To derive the dynamic programming procedure, let us first observe that we

can write

Ψ(x,y) =

r∑
t=1

φ(x, yt, yt−1),

for an appropriate φ : X × [q] × [q] ∪ {0} → Rd, and for simplicity we assume

that y0 is always equal to 0. Indeed, each feature function Ψi,j,1 can be written

in terms of

φi,j,1(x, yt, yt−1) = xi,t 1[yt=j],

238 Multiclass, Ranking, and Complex Prediction Problems

while the feature function Ψi,j,2 can be written in terms of

φi,j,2(x, yt, yt−1) = 1[yt=i] 1[yt−1=j].

Therefore, the prediction can be written as

hw(x) = argmax
y∈Y

r∑
t=1

〈w,φ(x, yt, yt−1)〉. (17.4)

In the following we derive a dynamic programming procedure that solves every

problem of the form given in Equation (17.4). The procedure will maintain a

matrix M ∈ Rq,r such that

Ms,τ = max
(y1,...,yτ):yτ=s

τ∑
t=1

〈w,φ(x, yt, yt−1)〉.

Clearly, the maximum of 〈w,Ψ(x,y)〉 equals maxsMs,r. Furthermore, we can

calculate M in a recursive manner:

Ms,τ = max
s′

(Ms′,τ−1 + 〈w,φ(x, s, s′)〉) . (17.5)

This yields the following procedure:

Dynamic Programming for Calculating hw(x) as Given

in Equation (17.4)

input: a matrix x ∈ Rn,r and a vector w

initialize:

foreach s ∈ [q]

Ms,1 = 〈w,φ(x, s,−1)〉
for τ = 2, . . . , r

foreach s ∈ [q]

set Ms,τ as in Equation (17.5)

set Is,τ to be the s′ that maximizes Equation (17.5)

set yt = argmaxsMs,r

for τ = r, r − 1, . . . , 2

set yτ−1 = Iyτ ,τ
output: y = (y1, . . . , yr)

17.4 Ranking

Ranking is the problem of ordering a set of instances according to their “rele-

vance.” A typical application is ordering results of a search engine according to

their relevance to the query. Another example is a system that monitors elec-

tronic transactions and should alert for possible fraudulent transactions. Such a

system should order transactions according to how suspicious they are.

Formally, let X ∗ =
⋃∞
n=1 Xn be the set of all sequences of instances from

17.4 Ranking 239

X of arbitrary length. A ranking hypothesis, h, is a function that receives a

sequence of instances x̄ = (x1, . . . ,xr) ∈ X ∗, and returns a permutation of [r].

It is more convenient to let the output of h be a vector y ∈ Rr, where by

sorting the elements of y we obtain the permutation over [r]. We denote by

π(y) the permutation over [r] induced by y. For example, for r = 5, the vector

y = (2, 1, 6,−1, 0.5) induces the permutation π(y) = (4, 3, 5, 1, 2). That is,

if we sort y in an ascending order, then we obtain the vector (−1, 0.5, 1, 2, 6).

Now, π(y)i is the position of yi in the sorted vector (−1, 0.5, 1, 2, 6). This

notation reflects that the top-ranked instances are those that achieve the highest

values in π(y).

In the notation of our PAC learning model, the examples domain is Z =⋃∞
r=1(X r ×Rr), and the hypothesis class, H, is some set of ranking hypotheses.

We next turn to describe loss functions for ranking. There are many possible ways

to define such loss functions, and here we list a few examples. In all the examples

we define `(h, (x̄,y)) = ∆(h(x̄),y), for some function ∆ :
⋃∞
r=1(Rr ×Rr)→ R+.

• 0–1 Ranking loss: ∆(y′,y) is zero if y and y′ induce exactly the same

ranking and ∆(y′,y) = 1 otherwise. That is, ∆(y′,y) = 1[π(y′)6=π(y)]. Such

a loss function is almost never used in practice as it does not distinguish

between the case in which π(y′) is almost equal to π(y) and the case in

which π(y′) is completely different from π(y).

• Kendall-Tau Loss: We count the number of pairs (i, j) that are in different

order in the two permutations. This can be written as

∆(y′,y) =
2

r(r − 1)

r−1∑
i=1

r∑
j=i+1

1[sign(y′i−y′j) 6=sign(yi−yj)].

This loss function is more useful than the 0–1 loss as it reflects the level of

similarity between the two rankings.

• Normalized Discounted Cumulative Gain (NDCG): This measure em-

phasizes the correctness at the top of the list by using a monotonically

nondecreasing discount function D : N→ R+. We first define a discounted

cumulative gain measure:

G(y′,y) =

r∑
i=1

D(π(y′)i) yi.

In words, if we interpret yi as a score of the “true relevance” of item i, then

we take a weighted sum of the relevance of the elements, while the weight

of yi is determined on the basis of the position of i in π(y′). Assuming that

all elements of y are nonnegative, it is easy to verify that 0 ≤ G(y′,y) ≤
G(y, y). We can therefore define a normalized discounted cumulative gain

by the ratio G(y′, y)/G(y, y), and the corresponding loss function would

be

∆(y′,y) = 1− G(y′,y)

G(y,y)
=

1

G(y,y)

r∑
i=1

(D(π(y)i)−D(π(y′)i)) yi.

240 Multiclass, Ranking, and Complex Prediction Problems

We can easily see that ∆(y′,y) ∈ [0, 1] and that ∆(y′,y) = 0 whenever

π(y′) = π(y).

A typical way to define the discount function is by

D(i) =

{
1

log2(r−i+2) if i ∈ {r − k + 1, . . . , r}
0 otherwise

where k < r is a parameter. This means that we care more about elements

that are ranked higher, and we completely ignore elements that are not at

the top-k ranked elements. The NDCG measure is often used to evaluate

the performance of search engines since in such applications it makes sense

completely to ignore elements that are not at the top of the ranking.

Once we have a hypothesis class and a ranking loss function, we can learn a

ranking function using the ERM rule. However, from the computational point of

view, the resulting optimization problem might be hard to solve. We next discuss

how to learn linear predictors for ranking.

17.4.1 Linear Predictors for Ranking

A natural way to define a ranking function is by projecting the instances onto

some vector w and then outputting the resulting scalars as our representation

of the ranking function. That is, assuming that X ⊂ Rd, for every w ∈ Rd we

define a ranking function

hw((x1, . . . ,xr)) = (〈w,x1〉, . . . , 〈w,xr〉). (17.6)

As we discussed in Chapter 16, we can also apply a feature mapping that maps

instances into some feature space and then takes the inner products with w in the

feature space. For simplicity, we focus on the simpler form as in Equation (17.6).

Given some W ⊂ Rd, we can now define the hypothesis class HW = {hw :

w ∈W}. Once we have defined this hypothesis class, and have chosen a ranking

loss function, we can apply the ERM rule as follows: Given a training set, S =

(x̄1,y1), . . . , (x̄m,ym), where each (x̄i,yi) is in (X × R)ri , for some ri ∈ N, we

should search w ∈ W that minimizes the empirical loss,
∑m
i=1 ∆(hw(x̄i),yi).

As in the case of binary classification, for many loss functions this problem is

computationally hard, and we therefore turn to describe convex surrogate loss

functions. We describe the surrogates for the Kendall tau loss and for the NDCG

loss.

A Hinge Loss for the Kendall Tau Loss Function:
We can think of the Kendall tau loss as an average of 0−1 losses for each pair.

In particular, for every (i, j) we can rewrite

1[sign(y′i−y′j)6=sign(yi−yj)] = 1[sign(yi−yj)(y′i−y′j)≤0].

17.4 Ranking 241

In our case, y′i−y′j = 〈w,xi−xj〉. It follows that we can use the hinge loss upper

bound as follows:

1[sign(yi−yj)(y′i−y′j)≤0] ≤ max {0, 1− sign (yi − yj) 〈w,xi − xj〉} .

Taking the average over the pairs we obtain the following surrogate convex loss

for the Kendall tau loss function:

∆(hw(x̄),y) ≤ 2

r(r − 1)

r−1∑
i=1

r∑
j=i+1

max {0, 1− sign(yi − yj) 〈w,xi − xj〉} .

The right-hand side is convex with respect to w and upper bounds the Kendall

tau loss. It is also a ρ-Lipschitz function with parameter ρ ≤ maxi,j ‖xi − xj‖.

A Hinge Loss for the NDCG Loss Function:
The NDCG loss function depends on the predicted ranking vector y′ ∈ Rr via

the permutation it induces. To derive a surrogate loss function we first make

the following observation. Let V be the set of all permutations of [r] encoded as

vectors; namely, each v ∈ V is a vector in [r]r such that for all i 6= j we have

vi 6= vj . Then (see Exercise 4),

π(y′) = argmax
v∈V

r∑
i=1

vi y
′
i. (17.7)

Let us denote Ψ(x̄,v) =
∑r
i=1 vixi; it follows that

π(hw(x̄)) = argmax
v∈V

r∑
i=1

vi〈w,xi〉

= argmax
v∈V

〈
w,

r∑
i=1

vixi

〉
= argmax

v∈V
〈w,Ψ(x̄,v)〉.

On the basis of this observation, we can use the generalized hinge loss for cost-

sensitive multiclass classification as a surrogate loss function for the NDCG loss

as follows:

∆(hw(x̄),y) ≤ ∆(hw(x̄),y) + 〈w,Ψ(x̄, π(hw(x̄)))〉 − 〈w,Ψ(x̄, π(y))〉
≤ max

v∈V
[∆(v,y) + 〈w,Ψ(x̄,v)〉 − 〈w,Ψ(x̄, π(y))〉]

= max
v∈V

[
∆(v,y) +

r∑
i=1

(vi − π(y)i) 〈w,xi〉

]
. (17.8)

The right-hand side is a convex function with respect to w.

We can now solve the learning problem using SGD as described in Section 17.2.5.

The main computational bottleneck is calculating a subgradient of the loss func-

tion, which is equivalent to finding v that achieves the maximum in Equa-

tion (17.8) (see Claim 14.6). Using the definition of the NDCG loss, this is

242 Multiclass, Ranking, and Complex Prediction Problems

equivalent to solving the problem

argmin
v∈V

r∑
i=1

(αivi + βiD(vi)),

where αi = −〈w,xi〉 and βi = yi/G(y,y). We can think of this problem a little

bit differently by defining a matrix A ∈ Rr,r where

Ai,j = jαi +D(j)βi.

Now, let us think about each j as a “worker,” each i as a “task,” and Ai,j as

the cost of assigning task i to worker j. With this view, the problem of finding

v becomes the problem of finding an assignment of the tasks to workers of

minimal cost. This problem is called “the assignment problem” and can be solved

efficiently. One particular algorithm is the “Hungarian method” (Kuhn 1955).

Another way to solve the assignment problem is using linear programming. To

do so, let us first write the assignment problem as

argmin
B∈Rr,r+

r∑
i,j=1

Ai,jBi,j (17.9)

s.t. ∀i ∈ [r],

r∑
j=1

Bi,j = 1

∀j ∈ [r],

r∑
i=1

Bi,j = 1

∀i, j, Bi,j ∈ {0, 1}

A matrix B that satisfies the constraints in the preceding optimization problem

is called a permutation matrix. This is because the constraints guarantee that

there is at most a single entry of each row that equals 1 and a single entry of each

column that equals 1. Therefore, the matrix B corresponds to the permutation

v ∈ V defined by vi = j for the single index j that satisfies Bi,j = 1.

The preceding optimization is still not a linear program because of the com-

binatorial constraint Bi,j ∈ {0, 1}. However, as it turns out, this constraint is

redundant – if we solve the optimization problem while simply omitting the

combinatorial constraint, then we are still guaranteed that there is an optimal

solution that will satisfy this constraint. This is formalized later.

Denote 〈A,B〉 =
∑
i,j Ai,jBi,j . Then, Equation (17.9) is the problem of mini-

mizing 〈A,B〉 such that B is a permutation matrix.

A matrix B ∈ Rr,r is called doubly stochastic if all elements of B are non-

negative, the sum of each row of B is 1, and the sum of each column of B is 1.

Therefore, solving Equation (17.9) without the constraints Bi,j ∈ {0, 1} is the

problem

argmin
B∈Rr,r

〈A,B〉 s.t. B is a doubly stochastic matrix. (17.10)

17.5 Bipartite Ranking and Multivariate Performance Measures 243

The following claim states that every doubly stochastic matrix is a convex

combination of permutation matrices.

claim 17.3 ((Birkhoff 1946, Von Neumann 1953)) The set of doubly stochastic

matrices in Rr,r is the convex hull of the set of permutation matrices in Rr,r.

On the basis of the claim, we easily obtain the following:

lemma 17.4 There exists an optimal solution of Equation (17.10) that is also

an optimal solution of Equation (17.9).

Proof Let B be a solution of Equation (17.10). Then, by Claim 17.3, we can

write B =
∑
i γiCi, where each Ci is a permutation matrix, each γi > 0, and∑

i γi = 1. Since all the Ci are also doubly stochastic, we clearly have that

〈A, B〉 ≤ 〈A, Ci〉 for every i. We claim that there is some i for which 〈A, B〉 =

〈A, Ci〉. This must be true since otherwise, if for every i 〈A, B〉 < 〈A, Ci〉, we

would have that

〈A,B〉 =

〈
A,
∑
i

γiCi

〉
=
∑
i

γi〈A,Ci〉 >
∑
i

γi〈A,B〉 = 〈A,B〉,

which cannot hold. We have thus shown that some permutation matrix, Ci,

satisfies 〈A,B〉 = 〈A,Ci〉. But, since for every other permutation matrix C we

have 〈A,B〉 ≤ 〈A,C〉 we conclude that Ci is an optimal solution of both Equa-

tion (17.9) and Equation (17.10).

17.5 Bipartite Ranking and Multivariate Performance Measures

In the previous section we described the problem of ranking. We used a vector

y ∈ Rr for representing an order over the elements x1, . . . ,xr. If all elements in y

are different from each other, then y specifies a full order over [r]. However, if two

elements of y attain the same value, yi = yj for i 6= j, then y can only specify a

partial order over [r]. In such a case, we say that xi and xj are of equal relevance

according to y. In the extreme case, y ∈ {±1}r, which means that each xi is

either relevant or nonrelevant. This setting is often called “bipartite ranking.” For

example, in the fraud detection application mentioned in the previous section,

each transaction is labeled as either fraudulent (yi = 1) or benign (yi = −1).

Seemingly, we can solve the bipartite ranking problem by learning a binary

classifier, applying it on each instance, and putting the positive ones at the top

of the ranked list. However, this may lead to poor results as the goal of a binary

learner is usually to minimize the zero-one loss (or some surrogate of it), while the

goal of a ranker might be significantly different. To illustrate this, consider again

the problem of fraud detection. Usually, most of the transactions are benign (say

99.9%). Therefore, a binary classifier that predicts “benign” on all transactions

will have a zero-one error of 0.1%. While this is a very small number, the resulting

predictor is meaningless for the fraud detection application. The crux of the

244 Multiclass, Ranking, and Complex Prediction Problems

problem stems from the inadequacy of the zero-one loss for what we are really

interested in. A more adequate performance measure should take into account

the predictions over the entire set of instances. For example, in the previous

section we have defined the NDCG loss, which emphasizes the correctness of the

top-ranked items. In this section we describe additional loss functions that are

specifically adequate for bipartite ranking problems.

As in the previous section, we are given a sequence of instances, x̄ = (x1, . . . ,xr),

and we predict a ranking vector y′ ∈ Rr. The feedback vector is y ∈ {±1}r. We

define a loss that depends on y′ and y and depends on a threshold θ ∈ R. This

threshold transforms the vector y′ ∈ Rr into the vector (sign(y′i−θ), . . . , sign(y′r−
θ)) ∈ {±1}r. Usually, the value of θ is set to be 0. However, as we will see, we

sometimes set θ while taking into account additional constraints on the problem.

The loss functions we define in the following depend on the following 4 num-

bers:

True positives: a = |{i : yi = +1 ∧ sign(y′i − θ) = +1}|
False positives: b = |{i : yi = −1 ∧ sign(y′i − θ) = +1}|
False negatives: c = |{i : yi = +1 ∧ sign(y′i − θ) = −1}|
True negatives: d = |{i : yi = −1 ∧ sign(y′i − θ) = −1}|

(17.11)

The recall (a.k.a. sensitivity) of a prediction vector is the fraction of true

positives y′ “catches,” namely, a
a+c . The precision is the fraction of correct

predictions among the positive labels we predict, namely, a
a+b . The specificity

is the fraction of true negatives that our predictor “catches,” namely, d
d+b .

Note that as we decrease θ the recall increases (attaining the value 1 when

θ = −∞). On the other hand, the precision and the specificity usually decrease

as we decrease θ. Therefore, there is a tradeoff between precision and recall, and

we can control it by changing θ. The loss functions defined in the following use

various techniques for combining both the precision and recall.

• Averaging sensitivity and specificity: This measure is the average of the

sensitivity and specificity, namely, 1
2

(
a
a+c + d

d+b

)
. This is also the accuracy

on positive examples averaged with the accuracy on negative examples.

Here, we set θ = 0 and the corresponding loss function is ∆(y′,y) =

1− 1
2

(
a
a+c + d

d+b

)
.

• F1-score: The F1 score is the harmonic mean of the precision and recall:
2

1
Precision + 1

Recall

. Its maximal value (of 1) is obtained when both precision

and recall are 1, and its minimal value (of 0) is obtained whenever one of

them is 0 (even if the other one is 1). The F1 score can be written using

the numbers a, b, c as follows; F1 = 2a
2a+b+c . Again, we set θ = 0, and the

loss function becomes ∆(y′, y) = 1− F1.

• Fβ-score: It is like F1 score, but we attach β2 times more importance to

recall than to precision, that is, 1+β2

1
Precision +β2 1

Recall

. It can also be written as

17.5 Bipartite Ranking and Multivariate Performance Measures 245

Fβ = (1+β2)a
(1+β2)a+b+β2c . Again, we set θ = 0, and the loss function becomes

∆(y′,y) = 1− Fβ .

• Recall at k: We measure the recall while the prediction must contain at most

k positive labels. That is, we should set θ so that a+ b ≤ k. This is conve-

nient, for example, in the application of a fraud detection system, where a

bank employee can only handle a small number of suspicious transactions.

• Precision at k: We measure the precision while the prediction must contain

at least k positive labels. That is, we should set θ so that a+ b ≥ k.

The measures defined previously are often referred to as multivariate perfor-

mance measures. Note that these measures are highly different from the average

zero-one loss, which in the preceding notation equals b+d
a+b+c+d . In the aforemen-

tioned example of fraud detection, when 99.9% of the examples are negatively

labeled, the zero-one loss of predicting that all the examples are negatives is

0.1%. In contrast, the recall of such prediction is 0 and hence the F1 score is also

0, which means that the corresponding loss will be 1.

17.5.1 Linear Predictors for Bipartite Ranking

We next describe how to train linear predictors for bipartite ranking. As in the

previous section, a linear predictor for ranking is defined to be

hw(x̄) = (〈w,x1〉, . . . , 〈w,xr〉).

The corresponding loss function is one of the multivariate performance measures

described before. The loss function depends on y′ = hw(x̄) via the binary vector

it induces, which we denote by

b(y′) = (sign(y′1 − θ), . . . , sign(y′r − θ)) ∈ {±1}r. (17.12)

As in the previous section, to facilitate an efficient algorithm we derive a convex

surrogate loss function on ∆. The derivation is similar to the derivation of the

generalized hinge loss for the NDCG ranking loss, as described in the previous

section.

Our first observation is that for all the values of θ defined before, there is some

V ⊆ {±1}r such that b(y′) can be rewritten as

b(y′) = argmax
v∈V

r∑
i=1

viy
′
i. (17.13)

This is clearly true for the case θ = 0 if we choose V = {±1}r. The two measures

for which θ is not taken to be 0 are precision at k and recall at k. For precision

at k we can take V to be the set V≥k, containing all vectors in {±1}r whose

number of ones is at least k. For recall at k, we can take V to be V≤k, which is

defined analogously. See Exercise 5.

246 Multiclass, Ranking, and Complex Prediction Problems

Once we have defined b as in Equation (17.13), we can easily derive a convex

surrogate loss as follows. Assuming that y ∈ V , we have that

∆(hw(x̄),y) = ∆(b(hw(x̄)),y)

≤ ∆(b(hw(x̄)),y) +

r∑
i=1

(bi(hw(x̄))− yi)〈w,xi〉

≤ max
v∈V

[
∆(v,y) +

r∑
i=1

(vi − yi) 〈w,xi〉

]
. (17.14)

The right-hand side is a convex function with respect to w.

We can now solve the learning problem using SGD as described in Section 17.2.5.

The main computational bottleneck is calculating a subgradient of the loss func-

tion, which is equivalent to finding v that achieves the maximum in Equa-

tion (17.14) (see Claim 14.6).

In the following we describe how to find this maximizer efficiently for any

performance measure that can be written as a function of the numbers a, b, c, d

given in Equation (17.11), and for which the set V contains all elements in {±1}r
for which the values of a, b satisfy some constraints. For example, for “recall at

k” the set V is all vectors for which a+ b ≤ k.

The idea is as follows. For any a, b ∈ [r], let

Ȳa,b = {v : |{i : vi = 1 ∧ yi = 1}| = a ∧ |{i : vi = 1 ∧ yi = −1}| = b } .

Any vector v ∈ V falls into Ȳa,b for some a, b ∈ [r]. Furthermore, if Ȳa,b ∩ V
is not empty for some a, b ∈ [r] then Ȳa,b ∩ V = Ȳa,b. Therefore, we can search

within each Ȳa,b that has a nonempty intersection with V separately, and then

take the optimal value. The key observation is that once we are searching only

within Ȳa,b, the value of ∆ is fixed so we only need to maximize the expression

max
v∈Ȳa,b

r∑
i=1

vi〈w,xi〉.

Suppose the examples are sorted so that 〈w,x1〉 ≥ · · · ≥ 〈w,xr〉. Then, it is

easy to verify that we would like to set vi to be positive for the smallest indices

i. Doing this, with the constraint on a, b, amounts to setting vi = 1 for the a

top ranked positive examples and for the b top-ranked negative examples. This

yields the following procedure.

17.6 Summary 247

Solving Equation (17.14)

input:

(x1, . . . ,xr), (y1, . . . , yr),w, V,∆

assumptions:

∆ is a function of a, b, c, d

V contains all vectors for which f(a, b) = 1 for some function f

initialize:

P = |{i : yi = 1}|, N = |{i : yi = −1}|
µ = (〈w,x1〉, . . . , 〈w,xr〉), α? = −∞
sort examples so that µ1 ≥ µ2 ≥ · · · ≥ µr
let i1, . . . , iP be the (sorted) indices of the positive examples

let j1, . . . , jN be the (sorted) indices of the negative examples

for a = 0, 1, . . . , P

c = P − a
for b = 0, 1, . . . , N such that f(a, b) = 1

d = N − b
calculate ∆ using a, b, c, d

set v1, . . . , vr s.t. vi1 = · · · = via = vj1 = · · · = vjb = 1

and the rest of the elements of v equal −1

set α = ∆ +
∑r
i=1 viµi

if α ≥ α?
α? = α, v? = v

output v?

17.6 Summary

Many real world supervised learning problems can be cast as learning a multiclass

predictor. We started the chapter by introducing reductions of multiclass learning

to binary learning. We then described and analyzed the family of linear predictors

for multiclass learning. We have shown how this family can be used even if the

number of classes is extremely large, as long as we have an adequate structure

on the problem. Finally, we have described ranking problems. In Chapter 29 we

study the sample complexity of multiclass learning in more detail.

17.7 Bibliographic Remarks

The One-versus-All and All-Pairs approach reductions have been unified un-

der the framework of Error Correction Output Codes (ECOC) (Dietterich &

Bakiri 1995, Allwein, Schapire & Singer 2000). There are also other types of re-

ductions such as tree-based classifiers (see, for example, Beygelzimer, Langford

& Ravikumar (2007)). The limitations of reduction techniques have been studied

248 Multiclass, Ranking, and Complex Prediction Problems

in (Daniely et al. 2011, Daniely, Sabato & Shwartz 2012). See also Chapter 29,

in which we analyze the sample complexity of multiclass learning.

Direct approaches to multiclass learning with linear predictors have been stud-

ied in (Vapnik 1998, Weston & Watkins 1999, Crammer & Singer 2001). In par-

ticular, the multivector construction is due to Crammer & Singer (2001).

Collins (2000) has shown how to apply the Perceptron algorithm for structured

output problems. See also Collins (2002). A related approach is discriminative

learning of conditional random fields; see Lafferty, McCallum & Pereira (2001).

Structured output SVM has been studied in (Weston, Chapelle, Vapnik, Elisseeff

& Schölkopf 2002, Taskar, Guestrin & Koller 2003, Tsochantaridis, Hofmann,

Joachims & Altun 2004).

The dynamic procedure we have presented for calculating the prediction hw(x)

in the structured output section is similar to the forward-backward variables

calculated by the Viterbi procedure in HMMs (see, for instance, (Rabiner &

Juang 1986)). More generally, solving the maximization problem in structured

output is closely related to the problem of inference in graphical models (see, for

example, Koller & Friedman (2009)).

Chapelle, Le & Smola (2007) proposed to learn a ranking function with respect

to the NDCG loss using ideas from structured output learning. They also ob-

served that the maximization problem in the definition of the generalized hinge

loss is equivalent to the assignment problem.

Agarwal & Roth (2005) analyzed the sample complexity of bipartite ranking.

Joachims (2005) studied the applicability of structured output SVM to bipartite

ranking with multivariate performance measures.

17.8 Exercises

1. Consider a set S of examples in Rn×[k] for which there exist vectors µ1, . . . ,µk
such that every example (x, y) ∈ S falls within a ball centered at µy whose

radius is r ≥ 1. Assume also that for every i 6= j, ‖µi − µj‖ ≥ 4r. Con-

sider concatenating each instance by the constant 1 and then applying the

multivector construction, namely,

Ψ(x, y) = [0, . . . , 0︸ ︷︷ ︸
∈R(y−1)(n+1)

, x1, . . . , xn, 1︸ ︷︷ ︸
∈Rn+1

, 0, . . . , 0︸ ︷︷ ︸
∈R(k−y)(n+1)

].

Show that there exists a vector w ∈ Rk(n+1) such that `(w, (x, y)) = 0 for

every (x, y) ∈ S.

Hint: Observe that for every example (x, y) ∈ S we can write x = µy + v for

some ‖v‖ ≤ r. Now, take w = [w1, . . . ,wk], where wi = [µi , −‖µi‖2/2].

2. Multiclass Perceptron: Consider the following algorithm:

17.8 Exercises 249

Multiclass Batch Perceptron

Input:

A training set (x1, y1), . . . , (xm, ym)

A class-sensitive feature mapping Ψ : X × Y → Rd
Initialize: w(1) = (0, . . . , 0) ∈ Rd

For t = 1, 2, . . .

If (∃ i and y 6= yi s.t. 〈w(t),Ψ(xi, yi)〉 ≤ 〈w(t),Ψ(xi, y)〉) then

w(t+1) = w(t) + Ψ(xi, yi)−Ψ(xi, y)

else

output w(t)

Prove the following:

theorem 17.5 Assume that there exists w? such that for all i and for all

y 6= yi it holds that 〈w?,Ψ(xi, yi)〉 ≥ 〈w?,Ψ(xi, y)〉+1. Let R = maxi,y ‖Ψ(xi, yi)−
Ψ(xi, y)‖. Then, the multiclass Perceptron algorithm stops after at most (R‖w?‖)2

iterations, and when it stops it holds that ∀i ∈ [m], yi = argmaxy 〈w(t),Ψ(xi, y)〉.

3. Generalize the dynamic programming procedure given in Section 17.3 for solv-

ing the maximization problem given in the definition of ĥ in the SGD proce-

dure for multiclass prediction. You can assume that ∆(y′,y) =
∑r
t=1 δ(y

′
t, yt)

for some arbitrary function δ.

4. Prove that Equation (17.7) holds.

5. Show that the two definitions of π as defined in Equation (17.12) and Equa-

tion (17.13) are indeed equivalent for all the multivariate performance mea-

sures.

18 Decision Trees

A decision tree is a predictor, h : X → Y, that predicts the label associated with

an instance x by traveling from a root node of a tree to a leaf. For simplicity

we focus on the binary classification setting, namely, Y = {0, 1}, but decision

trees can be applied for other prediction problems as well. At each node on the

root-to-leaf path, the successor child is chosen on the basis of a splitting of the

input space. Usually, the splitting is based on one of the features of x or on a

predefined set of splitting rules. A leaf contains a specific label. An example of

a decision tree for the papayas example (described in Chapter 2) is given in the

following:

Color?

not-tasty

other

Softness?

not-tasty

other

tasty

gives slightly to palm pressure

pale green to pale yellow

To check if a given papaya is tasty or not, the decision tree first examines

the color of the Papaya. If this color is not in the range pale green to pale

yellow, then the tree immediately predicts that the papaya is not tasty without

additional tests. Otherwise, the tree turns to examine the softness of the papaya.

If the softness level of the papaya is such that it gives slightly to palm pressure,

the decision tree predicts that the papaya is tasty. Otherwise, the prediction is

“not-tasty.” The preceding example underscores one of the main advantages of

decision trees – the resulting classifier is very simple to understand and interpret.

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

18.1 Sample Complexity 251

18.1 Sample Complexity

A popular splitting rule at internal nodes of the tree is based on thresholding the

value of a single feature. That is, we move to the right or left child of the node on

the basis of 1[xi<θ], where i ∈ [d] is the index of the relevant feature and θ ∈ R
is the threshold. In such cases, we can think of a decision tree as a splitting of

the instance space, X = Rd, into cells, where each leaf of the tree corresponds

to one cell. It follows that a tree with k leaves can shatter a set of k instances.

Hence, if we allow decision trees of arbitrary size, we obtain a hypothesis class

of infinite VC dimension. Such an approach can easily lead to overfitting.

To avoid overfitting, we can rely on the minimum description length (MDL)

principle described in Chapter 7, and aim at learning a decision tree that on one

hand fits the data well while on the other hand is not too large.

For simplicity, we will assume that X = {0, 1}d. In other words, each instance

is a vector of d bits. In that case, thresholding the value of a single feature

corresponds to a splitting rule of the form 1[xi=1] for some i = [d]. For instance,

we can model the “papaya decision tree” earlier by assuming that a papaya is

parameterized by a two-dimensional bit vector x ∈ {0, 1}2, where the bit x1

represents whether the color is pale green to pale yellow or not, and the bit x2

represents whether the softness is gives slightly to palm pressure or not. With

this representation, the node Color? can be replaced with 1[x1=1], and the node

Softness? can be replaced with 1[x2=1]. While this is a big simplification, the

algorithms and analysis we provide in the following can be extended to more

general cases.

With the aforementioned simplifying assumption, the hypothesis class becomes

finite, but is still very large. In particular, any classifier from {0, 1}d to {0, 1}
can be represented by a decision tree with 2d leaves and depth of d + 1 (see

Exercise 1). Therefore, the VC dimension of the class is 2d, which means that

the number of examples we need to PAC learn the hypothesis class grows with

2d. Unless d is very small, this is a huge number of examples.

To overcome this obstacle, we rely on the MDL scheme described in Chapter 7.

The underlying prior knowledge is that we should prefer smaller trees over larger

trees. To formalize this intuition, we first need to define a description language

for decision trees, which is prefix free and requires fewer bits for smaller decision

trees. Here is one possible way: A tree with n nodes will be described in n + 1

blocks, each of size log2(d + 3) bits. The first n blocks encode the nodes of the

tree, in a depth-first order (preorder), and the last block marks the end of the

code. Each block indicates whether the current node is:

• An internal node of the form 1[xi=1] for some i ∈ [d]

• A leaf whose value is 1

• A leaf whose value is 0

• End of the code

252 Decision Trees

Overall, there are d+ 3 options, hence we need log2(d+ 3) bits to describe each

block.

Assuming each internal node has two children,1 it is not hard to show that

this is a prefix-free encoding of the tree, and that the description length of a tree

with n nodes is (n+ 1) log2(d+ 3).

By Theorem 7.7 we have that with probability of at least 1− δ over a sample

of size m, for every n and every decision tree h ∈ H with n nodes it holds that

LD(h) ≤ LS(h) +

√
(n+ 1) log2(d+ 3) + log(2/δ)

2m
. (18.1)

This bound performs a tradeoff: on the one hand, we expect larger, more complex

decision trees to have a smaller training risk, LS(h), but the respective value of

n will be larger. On the other hand, smaller decision trees will have a smaller

value of n, but LS(h) might be larger. Our hope (or prior knowledge) is that we

can find a decision tree with both low empirical risk, LS(h), and a number of

nodes n not too high. Our bound indicates that such a tree will have low true

risk, LD(h).

18.2 Decision Tree Algorithms

The bound on LD(h) given in Equation (18.1) suggests a learning rule for decision

trees – search for a tree that minimizes the right-hand side of Equation (18.1).

Unfortunately, it turns out that solving this problem is computationally hard.2

Consequently, practical decision tree learning algorithms are based on heuristics

such as a greedy approach, where the tree is constructed gradually, and locally

optimal decisions are made at the construction of each node. Such algorithms

cannot guarantee to return the globally optimal decision tree but tend to work

reasonably well in practice.

A general framework for growing a decision tree is as follows. We start with

a tree with a single leaf (the root) and assign this leaf a label according to a

majority vote among all labels over the training set. We now perform a series of

iterations. On each iteration, we examine the effect of splitting a single leaf. We

define some “gain” measure that quantifies the improvement due to this split.

Then, among all possible splits, we either choose the one that maximizes the

gain and perform it, or choose not to split the leaf at all.

In the following we provide a possible implementation. It is based on a popular

decision tree algorithm known as “ID3” (short for “Iterative Dichotomizer 3”).

We describe the algorithm for the case of binary features, namely, X = {0, 1}d,

1 We may assume this without loss of generality, because if a decision node has only one
child, we can replace the node by its child without affecting the predictions of the decision

tree.
2 More precisely, if NP 6=P then no algorithm can solve Equation (18.1) in time polynomial

in n, d, and m.

18.2 Decision Tree Algorithms 253

and therefore all splitting rules are of the form 1[xi=1] for some feature i ∈ [d].

We discuss the case of real valued features in Section 18.2.3.

The algorithm works by recursive calls, with the initial call being ID3(S, [d]),

and returns a decision tree. In the pseudocode that follows, we use a call to a

procedure Gain(S, i), which receives a training set S and an index i and evaluates

the gain of a split of the tree according to the ith feature. We describe several

gain measures in Section 18.2.1.

ID3(S,A)

Input: training set S, feature subset A ⊆ [d]

if all examples in S are labeled by 1, return a leaf 1

if all examples in S are labeled by 0, return a leaf 0

if A = ∅, return a leaf whose value = majority of labels in S

else :

Let j = argmaxi∈A Gain(S, i)

if all examples in S have the same label

Return a leaf whose value = majority of labels in S

else

Let T1 be the tree returned by ID3({(x, y) ∈ S : xj = 1}, A \ {j}).
Let T2 be the tree returned by ID3({(x, y) ∈ S : xj = 0}, A \ {j}).
Return the tree:

xj = 1?

T2 T1

18.2.1 Implementations of the Gain Measure

Different algorithms use different implementations of Gain(S, i). Here we present

three. We use the notation PS [F] to denote the probability that an event holds

with respect to the uniform distribution over S.

Train Error: The simplest definition of gain is the decrease in training error.

Formally, let C(a) = min{a, 1−a}. Note that the training error before splitting on

feature i is C(PS [y = 1]), since we took a majority vote among labels. Similarly,

the error after splitting on feature i is

P
S

[xi = 1]C(P
S

[y = 1|xi = 1]) + P
S

[xi = 0]C(P
S

[y = 1|xi = 0]).

Therefore, we can define Gain to be the difference between the two, namely,

Gain(S, i) := C(P
S

[y = 1])

−
(
P
S

[xi = 1]C(P
S

[y = 1|xi = 1]) + P
S

[xi = 0]C(P
S

[y = 1|xi = 0])
)
.

254 Decision Trees

Information Gain: Another popular gain measure that is used in the ID3

and C4.5 algorithms of Quinlan (1993) is the information gain. The information

gain is the difference between the entropy of the label before and after the split,

and is achieved by replacing the function C in the previous expression by the

entropy function,

C(a) = −a log(a)− (1− a) log(1− a).

Gini Index: Yet another definition of a gain, which is used by the CART

algorithm of Breiman, Friedman, Olshen & Stone (1984), is the Gini index,

C(a) = 2a(1− a).

Both the information gain and the Gini index are smooth and concave upper

bounds of the train error. These properties can be advantageous in some situa-

tions (see, for example, Kearns & Mansour (1996)).

18.2.2 Pruning

The ID3 algorithm described previously still suffers from a big problem: The

returned tree will usually be very large. Such trees may have low empirical risk,

but their true risk will tend to be high – both according to our theoretical

analysis, and in practice. One solution is to limit the number of iterations of ID3,

leading to a tree with a bounded number of nodes. Another common solution is

to prune the tree after it is built, hoping to reduce it to a much smaller tree,

but still with a similar empirical error. Theoretically, according to the bound in

Equation (18.1), if we can make n much smaller without increasing LS(h) by

much, we are likely to get a decision tree with a smaller true risk.

Usually, the pruning is performed by a bottom-up walk on the tree. Each node

might be replaced with one of its subtrees or with a leaf, based on some bound

or estimate of LD(h) (for example, the bound in Equation (18.1)). A pseudocode

of a common template is given in the following.

Generic Tree Pruning Procedure

input:

function f(T,m) (bound/estimate for the generalization error

of a decision tree T , based on a sample of size m),

tree T .

foreach node j in a bottom-up walk on T (from leaves to root):

find T ′ which minimizes f(T ′,m), where T ′ is any of the following:

the current tree after replacing node j with a leaf 1.

the current tree after replacing node j with a leaf 0.

the current tree after replacing node j with its left subtree.

the current tree after replacing node j with its right subtree.

the current tree.

let T := T ′.

18.3 Random Forests 255

18.2.3 Threshold-Based Splitting Rules for Real-Valued Features

In the previous section we have described an algorithm for growing a decision

tree assuming that the features are binary and the splitting rules are of the

form 1[xi=1]. We now extend this result to the case of real-valued features and

threshold-based splitting rules, namely, 1[xi<θ]. Such splitting rules yield decision

stumps, and we have studied them in Chapter 10.

The basic idea is to reduce the problem to the case of binary features as

follows. Let x1, . . . ,xm be the instances of the training set. For each real-valued

feature i, sort the instances so that x1,i ≤ · · · ≤ xm,i. Define a set of thresholds

θ0,i, . . . , θm+1,i such that θj,i ∈ (xj,i, xj+1,i) (where we use the convention x0,i =

−∞ and xm+1,i = ∞). Finally, for each i and j we define the binary feature

1[xi<θj,i]. Once we have constructed these binary features, we can run the ID3

procedure described in the previous section. It is easy to verify that for any

decision tree with threshold-based splitting rules over the original real-valued

features there exists a decision tree over the constructed binary features with

the same training error and the same number of nodes.

If the original number of real-valued features is d and the number of examples

is m, then the number of constructed binary features becomes dm. Calculating

the Gain of each feature might therefore take O(dm2) operations. However, using

a more clever implementation, the runtime can be reduced to O(dm log(m)). The

idea is similar to the implementation of ERM for decision stumps as described

in Section 10.1.1.

18.3 Random Forests

As mentioned before, the class of decision trees of arbitrary size has infinite VC

dimension. We therefore restricted the size of the decision tree. Another way

to reduce the danger of overfitting is by constructing an ensemble of trees. In

particular, in the following we describe the method of random forests, introduced

by Breiman (2001).

A random forest is a classifier consisting of a collection of decision trees, where

each tree is constructed by applying an algorithm A on the training set S and

an additional random vector, θ, where θ is sampled i.i.d. from some distribution.

The prediction of the random forest is obtained by a majority vote over the

predictions of the individual trees.

To specify a particular random forest, we need to define the algorithm A and

the distribution over θ. There are many ways to do this and here we describe one

particular option. We generate θ as follows. First, we take a random subsample

from S with replacements; namely, we sample a new training set S′ of size m′

using the uniform distribution over S. Second, we construct a sequence I1, I2, . . .,

where each It is a subset of [d] of size k, which is generated by sampling uniformly

at random elements from [d]. All these random variables form the vector θ. Then,

256 Decision Trees

the algorithm A grows a decision tree (e.g., using the ID3 algorithm) based on

the sample S′, where at each splitting stage of the algorithm, the algorithm is

restricted to choosing a feature that maximizes Gain from the set It. Intuitively,

if k is small, this restriction may prevent overfitting.

18.4 Summary

Decision trees are very intuitive predictors. Typically, if a human programmer

creates a predictor it will look like a decision tree. We have shown that the VC

dimension of decision trees with k leaves is k and proposed the MDL paradigm

for learning decision trees. The main problem with decision trees is that they

are computationally hard to learn; therefore we described several heuristic pro-

cedures for training them.

18.5 Bibliographic Remarks

Many algorithms for learning decision trees (such as ID3 and C4.5) have been

derived by Quinlan (1986). The CART algorithm is due to Breiman et al. (1984).

Random forests were introduced by Breiman (2001). For additional reading we

refer the reader to (Hastie, Tibshirani & Friedman 2001, Rokach 2007).

The proof of the hardness of training decision trees is given in Hyafil & Rivest

(1976).

18.6 Exercises

1. 1. Show that any binary classifier h : {0, 1}d 7→ {0, 1} can be implemented

as a decision tree of height at most d+ 1, with internal nodes of the form

(xi = 0?) for some i ∈ {1, . . . , d}.
2. Conclude that the VC dimension of the class of decision trees over the

domain {0, 1}d is 2d.

2. (Suboptimality of ID3)

Consider the following training set, where X = {0, 1}3 and Y = {0, 1}:

((1, 1, 1), 1)

((1, 0, 0), 1)

((1, 1, 0), 0)

((0, 0, 1), 0)

Suppose we wish to use this training set in order to build a decision tree of

depth 2 (i.e., for each input we are allowed to ask two questions of the form

(xi = 0?) before deciding on the label).

18.6 Exercises 257

1. Suppose we run the ID3 algorithm up to depth 2 (namely, we pick the root

node and its children according to the algorithm, but instead of keeping

on with the recursion, we stop and pick leaves according to the majority

label in each subtree). Assume that the subroutine used to measure the

quality of each feature is based on the entropy function (so we measure the

information gain), and that if two features get the same score, one of them

is picked arbitrarily. Show that the training error of the resulting decision

tree is at least 1/4.

2. Find a decision tree of depth 2 that attains zero training error.

19 Nearest Neighbor

Nearest Neighbor algorithms are among the simplest of all machine learning

algorithms. The idea is to memorize the training set and then to predict the

label of any new instance on the basis of the labels of its closest neighbors in

the training set. The rationale behind such a method is based on the assumption

that the features that are used to describe the domain points are relevant to

their labelings in a way that makes close-by points likely to have the same label.

Furthermore, in some situations, even when the training set is immense, finding

a nearest neighbor can be done extremely fast (for example, when the training

set is the entire Web and distances are based on links).

Note that, in contrast with the algorithmic paradigms that we have discussed

so far, like ERM, SRM, MDL, or RLM, that are determined by some hypothesis

class, H, the Nearest Neighbor method figures out a label on any test point

without searching for a predictor within some predefined class of functions.

In this chapter we describe Nearest Neighbor methods for classification and

regression problems. We analyze their performance for the simple case of binary

classification and discuss the efficiency of implementing these methods.

19.1 k Nearest Neighbors

Throughout the entire chapter we assume that our instance domain, X , is en-

dowed with a metric function ρ. That is, ρ : X×X → R is a function that returns

the distance between any two elements of X . For example, if X = Rd then ρ can

be the Euclidean distance, ρ(x,x′) = ‖x− x′‖ =
√∑d

i=1(xi − x′i)2.

Let S = (x1, y1), . . . , (xm, ym) be a sequence of training examples. For each

x ∈ X , let π1(x), . . . , πm(x) be a reordering of {1, . . . ,m} according to their

distance to x, ρ(x,xi). That is, for all i < m,

ρ(x,xπi(x)) ≤ ρ(x,xπi+1(x)).

For a number k, the k-NN rule for binary classification is defined as follows:

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

19.2 Analysis 259

Figure 19.1 An illustration of the decision boundaries of the 1-NN rule. The points
depicted are the sample points, and the predicted label of any new point will be the
label of the sample point in the center of the cell it belongs to. These cells are called a
Voronoi Tessellation of the space.

k-NN

input: a training sample S = (x1, y1), . . . , (xm, ym)

output: for every point x ∈ X ,

return the majority label among {yπi(x) : i ≤ k}

When k = 1, we have the 1-NN rule:

hS(x) = yπ1(x).

A geometric illustration of the 1-NN rule is given in Figure 19.1.

For regression problems, namely, Y = R, one can define the prediction to be

the average target of the k nearest neighbors. That is, hS(x) = 1
k

∑k
i=1 yπi(x).

More generally, for some function φ : (X ×Y)k → Y, the k-NN rule with respect

to φ is:

hS(x) = φ
(
(xπ1(x), yπ1(x)), . . . , (xπk(x), yπk(x))

)
. (19.1)

It is easy to verify that we can cast the prediction by majority of labels (for

classification) or by the averaged target (for regression) as in Equation (19.1) by

an appropriate choice of φ. The generality can lead to other rules; for example, if

Y = R, we can take a weighted average of the targets according to the distance

from x:

hS(x) =

k∑
i=1

ρ(x,xπi(x))∑k
j=1 ρ(x,xπj(x))

yπi(x).

19.2 Analysis

Since the NN rules are such natural learning methods, their generalization prop-

erties have been extensively studied. Most previous results are asymptotic con-

sistency results, analyzing the performance of NN rules when the sample size, m,

260 Nearest Neighbor

goes to infinity, and the rate of convergence depends on the underlying distribu-

tion. As we have argued in Section 7.4, this type of analysis is not satisfactory.

One would like to learn from finite training samples and to understand the gen-

eralization performance as a function of the size of such finite training sets and

clear prior assumptions on the data distribution. We therefore provide a finite-

sample analysis of the 1-NN rule, showing how the error decreases as a function

of m and how it depends on properties of the distribution. We will also explain

how the analysis can be generalized to k-NN rules for arbitrary values of k. In

particular, the analysis specifies the number of examples required to achieve a

true error of 2LD(h?) + ε, where h? is the Bayes optimal hypothesis, assuming

that the labeling rule is “well behaved” (in a sense we will define later).

19.2.1 A Generalization Bound for the 1-NN Rule

We now analyze the true error of the 1-NN rule for binary classification with

the 0-1 loss, namely, Y = {0, 1} and `(h, (x, y)) = 1[h(x)6=y]. We also assume

throughout the analysis that X = [0, 1]d and ρ is the Euclidean distance.

We start by introducing some notation. Let D be a distribution over X × Y.

Let DX denote the induced marginal distribution over X and let η : Rd → R be

the conditional probability1 over the labels, that is,

η(x) = P[y = 1|x].

Recall that the Bayes optimal rule (that is, the hypothesis that minimizes LD(h)

over all functions) is

h?(x) = 1[η(x)>1/2].

We assume that the conditional probability function η is c-Lipschitz for some

c > 0: Namely, for all x,x′ ∈ X , |η(x)−η(x′)| ≤ c ‖x−x′‖. In other words, this

assumption means that if two vectors are close to each other then their labels

are likely to be the same.

The following lemma applies the Lipschitzness of the conditional probability

function to upper bound the true error of the 1-NN rule as a function of the

expected distance between each test instance and its nearest neighbor in the

training set.

lemma 19.1 Let X = [0, 1]d,Y = {0, 1}, and D be a distribution over X × Y
for which the conditional probability function, η, is a c-Lipschitz function. Let

S = (x1, y1), . . . , (xm, ym) be an i.i.d. sample and let hS be its corresponding

1-NN hypothesis. Let h? be the Bayes optimal rule for η. Then,

E
S∼Dm

[LD(hS)] ≤ 2LD(h?) + c E
S∼Dm,x∼D

[‖x− xπ1(x)‖].

1 Formally, P[y = 1|x] = limδ→0
D({(x′,1):x′∈B(x,δ)})

D({(x′,y):x′∈B(x,δ),y∈Y}) , where B(x, δ) is a ball of radius δ

centered around x.

19.2 Analysis 261

Proof Since LD(hS) = E(x,y)∼D[1[hS(x)6=y]], we obtain that ES [LD(hS)] is the

probability to sample a training set S and an additional example (x, y), such

that the label of π1(x) is different from y. In other words, we can first sample

m unlabeled examples, Sx = (x1, . . . ,xm), according to DX , and an additional

unlabeled example, x ∼ DX , then find π1(x) to be the nearest neighbor of x in

Sx, and finally sample y ∼ η(x) and yπ1(x) ∼ η(π1(x)). It follows that

E
S

[LD(hS)] = E
Sx∼DmX ,x∼DX ,y∼η(x),y′∼η(π1(x))

[1[y 6=y′]]

= E
Sx∼DmX ,x∼DX

[
P

y∼η(x),y′∼η(π1(x))
[y 6= y′]

]
. (19.2)

We next upper bound Py∼η(x),y′∼η(x′)[y 6= y′] for any two domain points x,x′:

P
y∼η(x),y′∼η(x′)

[y 6= y′] = η(x′)(1− η(x)) + (1− η(x′))η(x)

= (η(x)− η(x) + η(x′))(1− η(x))

+ (1− η(x) + η(x)− η(x′))η(x)

= 2η(x)(1− η(x)) + (η(x)− η(x′))(2η(x)− 1).

Using |2η(x) − 1| ≤ 1 and the assumption that η is c-Lipschitz, we obtain that

the probability is at most:

P
y∼η(x),y′∼η(x′)

[y 6= y′] ≤ 2η(x)(1− η(x)) + c ‖x− x′‖.

Plugging this into Equation (19.2) we conclude that

E
S

[LD(hS)] ≤ E
x

[2η(x)(1− η(x))] + c E
S,x

[‖x− xπ1(x)‖].

Finally, the error of the Bayes optimal classifier is

LD(h?) = E
x

[min{η(x), 1− η(x)}] ≥ E
x

[η(x)(1− η(x))].

Combining the preceding two inequalities concludes our proof.

The next step is to bound the expected distance between a random x and its

closest element in S. We first need the following general probability lemma. The

lemma bounds the probability weight of subsets that are not hit by a random

sample, as a function of the size of that sample.

lemma 19.2 Let C1, . . . , Cr be a collection of subsets of some domain set, X .

Let S be a sequence of m points sampled i.i.d. according to some probability

distribution, D over X . Then,

E
S∼Dm

 ∑
i:Ci∩S=∅

P[Ci]

 ≤ r

me
.

262 Nearest Neighbor

Proof From the linearity of expectation, we can rewrite:

E
S

 ∑
i:Ci∩S=∅

P[Ci]

 =

r∑
i=1

P[Ci]E
S

[
1[Ci∩S=∅]

]
.

Next, for each i we have

E
S

[
1[Ci∩S=∅]

]
= P

S
[Ci ∩ S = ∅] = (1− P[Ci])

m ≤ e− P[Ci]m.

Combining the preceding two equations we get

E
S

 ∑
i:Ci∩S=∅

P[Ci]

 ≤ r∑
i=1

P[Ci] e
− P[Ci]m ≤ r max

i
P[Ci] e

− P[Ci]m.

Finally, by a standard calculus, maxa ae
−ma ≤ 1

me and this concludes the proof.

Equipped with the preceding lemmas we are now ready to state and prove the

main result of this section – an upper bound on the expected error of the 1-NN

learning rule.

theorem 19.3 Let X = [0, 1]d,Y = {0, 1}, and D be a distribution over X ×Y
for which the conditional probability function, η, is a c-Lipschitz function. Let

hS denote the result of applying the 1-NN rule to a sample S ∼ Dm. Then,

E
S∼Dm

[LD(hS)] ≤ 2LD(h?) + 4 c
√
dm
− 1
d+1 .

Proof Fix some ε = 1/T , for some integer T , let r = T d and let C1, . . . , Cr be the

cover of the set X using boxes of length ε: Namely, for every (α1, . . . , αd) ∈ [T]d,

there exists a set Ci of the form {x : ∀j, xj ∈ [(αj−1)/T, αj/T]}. An illustration

for d = 2, T = 5 and the set corresponding to α = (2, 4) is given in the following.

1

1

For each x,x′ in the same box we have ‖x−x′‖ ≤
√
d ε. Otherwise, ‖x−x′‖ ≤

√
d.

Therefore,

E
x,S

[‖x− xπ1(x)‖] ≤ E
S

P
 ⋃
i:Ci∩S=∅

Ci

√d+ P

 ⋃
i:Ci∩S 6=∅

Ci

 ε√d
 ,

and by combining Lemma 19.2 with the trivial bound P[
⋃
i:Ci∩S 6=∅ Ci] ≤ 1 we

get that

E
x,S

[‖x− xπ1(x)‖] ≤
√
d
(
r
me + ε

)
.

19.2 Analysis 263

Since the number of boxes is r = (1/ε)d we get that

E
S,x

[‖x− xπ1(x)‖] ≤
√
d
(

2d ε−d

me + ε
)
.

Combining the preceding with Lemma 19.1 we obtain that

E
S

[LD(hS)] ≤ 2LD(h?) + c
√
d
(

2d ε−d

me + ε
)
.

Finally, setting ε = 2m−1/(d+1) and noting that

2d ε−d

me
+ ε =

2d 2−dmd/(d+1)

me
+ 2m−1/(d+1)

= m−1/(d+1)(1/e+ 2) ≤ 4m−1/(d+1)

we conclude our proof.

The theorem implies that if we first fix the data-generating distribution and

then let m go to infinity, then the error of the 1-NN rule converges to twice the

Bayes error. The analysis can be generalized to larger values of k, showing that

the expected error of the k-NN rule converges to (1 +
√

8/k) times the error of

the Bayes classifier. This is formalized in Theorem 19.5, whose proof is left as a

guided exercise.

19.2.2 The “Curse of Dimensionality”

The upper bound given in Theorem 19.3 grows with c (the Lipschitz coefficient

of η) and with d, the Euclidean dimension of the domain set X . In fact, it is easy

to see that a necessary condition for the last term in Theorem 19.3 to be smaller

than ε is that m ≥ (4 c
√
d/ε)d+1. That is, the size of the training set should

increase exponentially with the dimension. The following theorem tells us that

this is not just an artifact of our upper bound, but, for some distributions, this

amount of examples is indeed necessary for learning with the NN rule.

theorem 19.4 For any c > 1, and every learning rule, L, there exists a

distribution over [0, 1]d×{0, 1}, such that η(x) is c-Lipschitz, the Bayes error of

the distribution is 0, but for sample sizes m ≤ (c + 1)d/2, the true error of the

rule L is greater than 1/4.

Proof Fix any values of c and d. Let Gdc be the grid on [0, 1]d with distance of

1/c between points on the grid. That is, each point on the grid is of the form

(a1/c, . . . , ad/c) where ai is in {0, . . . , c− 1, c}. Note that, since any two distinct

points on this grid are at least 1/c apart, any function η : GDC → [0, 1] is a

c-Lipschitz function. It follows that the set of all c-Lipschitz functions over Gdc
contains the set of all binary valued functions over that domain. We can therefore

invoke the No-Free-Lunch result (Theorem 5.1) to obtain a lower bound on the

needed sample sizes for learning that class. The number of points on the grid is

(c+ 1)d; hence, if m < (c+ 1)d/2, Theorem 5.1 implies the lower bound we are

after.

264 Nearest Neighbor

The exponential dependence on the dimension is known as the curse of di-

mensionality. As we saw, the 1-NN rule might fail if the number of examples is

smaller than Ω((c+1)d). Therefore, while the 1-NN rule does not restrict itself to

a predefined set of hypotheses, it still relies on some prior knowledge – its success

depends on the assumption that the dimension and the Lipschitz constant of the

underlying distribution, η, are not too high.

19.3 Efficient Implementation*

Nearest Neighbor is a learning-by-memorization type of rule. It requires the

entire training data set to be stored, and at test time, we need to scan the entire

data set in order to find the neighbors. The time of applying the NN rule is

therefore Θ(dm). This leads to expensive computation at test time.

When d is small, several results from the field of computational geometry have

proposed data structures that enable to apply the NN rule in time o(dO(1) log(m)).

However, the space required by these data structures is roughly mO(d), which

makes these methods impractical for larger values of d.

To overcome this problem, it was suggested to improve the search method by

allowing an approximate search. Formally, an r-approximate search procedure is

guaranteed to retrieve a point within distance of at most r times the distance

to the nearest neighbor. Three popular approximate algorithms for NN are the

kd-tree, balltrees, and locality-sensitive hashing (LSH). We refer the reader, for

example, to (Shakhnarovich, Darrell & Indyk 2006).

19.4 Summary

The k-NN rule is a very simple learning algorithm that relies on the assumption

that “things that look alike must be alike.” We formalized this intuition using

the Lipschitzness of the conditional probability. We have shown that with a suf-

ficiently large training set, the risk of the 1-NN is upper bounded by twice the

risk of the Bayes optimal rule. We have also derived a lower bound that shows

the “curse of dimensionality” – the required sample size might increase expo-

nentially with the dimension. As a result, NN is usually performed in practice

after a dimensionality reduction preprocessing step. We discuss dimensionality

reduction techniques later on in Chapter 23.

19.5 Bibliographic Remarks

Cover & Hart (1967) gave the first analysis of 1-NN, showing that its risk con-

verges to twice the Bayes optimal error under mild conditions. Following a lemma

due to Stone (1977), Devroye & Györfi (1985) have shown that the k-NN rule

19.6 Exercises 265

is consistent (with respect to the hypothesis class of all functions from Rd to

{0, 1}). A good presentation of the analysis is given in the book of Devroye et al.

(1996). Here, we give a finite sample guarantee that explicitly underscores the

prior assumption on the distribution. See Section 7.4 for a discussion on con-

sistency results. Finally, Gottlieb, Kontorovich & Krauthgamer (2010) derived

another finite sample bound for NN that is more similar to VC bounds.

19.6 Exercises

In this exercise we will prove the following theorem for the k-NN rule.

theorem 19.5 Let X = [0, 1]d,Y = {0, 1}, and D be a distribution over X ×Y
for which the conditional probability function, η, is a c-Lipschitz function. Let hS
denote the result of applying the k-NN rule to a sample S ∼ Dm, where k ≥ 10.

Let h? be the Bayes optimal hypothesis. Then,

E
S

[LD(hS)] ≤

(
1 +

√
8

k

)
LD(h?) +

(
6 c
√
d+ k

)
m−1/(d+1).

1. Prove the following lemma.

lemma 19.6 Let C1, . . . , Cr be a collection of subsets of some domain set,

X . Let S be a sequence of m points sampled i.i.d. according to some probability

distribution, D over X . Then, for every k ≥ 2,

E
S∼Dm

 ∑
i:|Ci∩S|<k

P[Ci]

 ≤ 2rk

m
.

Hints:

• Show that

E
S

 ∑
i:|Ci∩S|<k

P[Ci]

 =

r∑
i=1

P[Ci]P
S

[|Ci ∩ S| < k] .

• Fix some i and suppose that k < P[Ci]m/2. Use Chernoff’s bound to show

that

P
S

[|Ci ∩ S| < k] ≤ P
S

[|Ci ∩ S| < P[Ci]m/2] ≤ e− P[Ci]m/8.

• Use the inequality maxa ae
−ma ≤ 1

me to show that for such i we have

P[Ci]P
S

[|Ci ∩ S| < k] ≤ P[Ci]e
− P[Ci]m/8 ≤ 8

me
.

• Conclude the proof by using the fact that for the case k ≥ P[Ci]m/2 we

clearly have:

P[Ci]P
S

[|Ci ∩ S| < k] ≤ P[Ci] ≤
2k

m
.

266 Nearest Neighbor

2. We use the notation y ∼ p as a shorthand for “y is a Bernoulli random variable

with expected value p.” Prove the following lemma:

lemma 19.7 Let k ≥ 10 and let Z1, . . . , Zk be independent Bernoulli random

variables with P[Zi = 1] = pi. Denote p = 1
k

∑
i pi and p′ = 1

k

∑k
i=1 Zi. Show

that

E
Z1,...,Zk

P
y∼p

[y 6= 1[p′>1/2]] ≤

(
1 +

√
8

k

)
P
y∼p

[y 6= 1[p>1/2]].

Hints:

W.l.o.g. assume that p ≤ 1/2. Then, Py∼p[y 6= 1[p>1/2]] = p. Let y′ = 1[p′>1/2].

• Show that

E
Z1,...,Zk

P
y∼p

[y 6= y′]− p = P
Z1,...,Zk

[p′ > 1/2](1− 2p).

• Use Chernoff’s bound (Lemma B.3) to show that

P[p′ > 1/2] ≤ e−k p h(
1
2p−1),

where

h(a) = (1 + a) log(1 + a)− a.

• To conclude the proof of the lemma, you can rely on the following inequality

(without proving it): For every p ∈ [0, 1/2] and k ≥ 10:

(1− 2p) e−k p+ k
2 (log(2p)+1) ≤

√
8

k
p.

3. Fix some p, p′ ∈ [0, 1] and y′ ∈ {0, 1}. Show that

P
y∼p

[y 6= y′] ≤ P
y∼p′

[y 6= y′] + |p− p′|.

4. Conclude the proof of the theorem according to the following steps:

• As in the proof of Theorem 19.3, six some ε > 0 and let C1, . . . , Cr be the

cover of the set X using boxes of length ε. For each x,x′ in the same

box we have ‖x− x′‖ ≤
√
d ε. Otherwise, ‖x− x′‖ ≤ 2

√
d. Show that

E
S

[LD(hS)] ≤ E
S

 ∑
i:|Ci∩S|<k

P[Ci]

+ max

i
P

S,(x,y)

[
hS(x) 6= y | ∀j ∈ [k], ‖x− xπj(x)‖ ≤ ε

√
d
]
. (19.3)

• Bound the first summand using Lemma 19.6.

• To bound the second summand, let us fix S|x and x such that all the k

neighbors of x in S|x are at distance of at most ε
√
d from x. W.l.o.g

assume that the k NN are x1, . . . ,xk. Denote pi = η(xi) and let p =
1
k

∑
i pi. Use Exercise 3 to show that

E
y1,...,yj

P
y∼η(x)

[hS(x) 6= y] ≤ E
y1,...,yj

P
y∼p

[hS(x) 6= y] + |p− η(x)|.

19.6 Exercises 267

W.l.o.g. assume that p ≤ 1/2. Now use Lemma 19.7 to show that

P
y1,...,yj

P
y∼p

[hS(x) 6= y] ≤

(
1 +

√
8

k

)
P
y∼p

[1[p>1/2] 6= y].

• Show that

P
y∼p

[1[p>1/2] 6= y] = p = min{p, 1−p} ≤ min{η(x), 1−η(x)}+ |p−η(x)|.

• Combine all the preceding to obtain that the second summand in Equa-

tion (19.3) is bounded by(
1 +

√
8

k

)
LD(h?) + 3 c ε

√
d.

• Use r = (2/ε)d to obtain that:

E
S

[LD(hS)] ≤

(
1 +

√
8

k

)
LD(h?) + 3 c ε

√
d+

2(2/ε)d k

m
.

Set ε = 2m−1/(d+1) and use

6 cm−1/(d+1)
√
d+

2k

e
m−1/(d+1) ≤

(
6c
√
d+ k

)
m−1/(d+1)

to conclude the proof.

20 Neural Networks

An artificial neural network is a model of computation inspired by the structure

of neural networks in the brain. In simplified models of the brain, it consists of

a large number of basic computing devices (neurons) that are connected to each

other in a complex communication network, through which the brain is able to

carry out highly complex computations. Artificial neural networks are formal

computation constructs that are modeled after this computation paradigm.

Learning with neural networks was proposed in the mid-20th century. It yields

an effective learning paradigm and has recently been shown to achieve cutting-

edge performance on several learning tasks.

A neural network can be described as a directed graph whose nodes correspond

to neurons and edges correspond to links between them. Each neuron receives

as input a weighted sum of the outputs of the neurons connected to its incoming

edges. We focus on feedforward networks in which the underlying graph does not

contain cycles.

In the context of learning, we can define a hypothesis class consisting of neural

network predictors, where all the hypotheses share the underlying graph struc-

ture of the network and differ in the weights over edges. As we will show in

Section 20.3, every predictor over n variables that can be implemented in time

T (n) can also be expressed as a neural network predictor of size O(T (n)2), where

the size of the network is the number of nodes in it. It follows that the family

of hypothesis classes of neural networks of polynomial size can suffice for all

practical learning tasks, in which our goal is to learn predictors which can be

implemented efficiently. Furthermore, in Section 20.4 we will show that the sam-

ple complexity of learning such hypothesis classes is also bounded in terms of the

size of the network. Hence, it seems that this is the ultimate learning paradigm

we would want to adapt, in the sense that it both has a polynomial sample com-

plexity and has the minimal approximation error among all hypothesis classes

consisting of efficiently implementable predictors.

The caveat is that the problem of training such hypothesis classes of neural net-

work predictors is computationally hard. This will be formalized in Section 20.5.

A widely used heuristic for training neural networks relies on the SGD frame-

work we studied in Chapter 14. There, we have shown that SGD is a successful

learner if the loss function is convex. In neural networks, the loss function is

highly nonconvex. Nevertheless, we can still implement the SGD algorithm and

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

20.1 Feedforward Neural Networks 269

hope it will find a reasonable solution (as happens to be the case in several

practical tasks). In Section 20.6 we describe how to implement SGD for neural

networks. In particular, the most complicated operation is the calculation of the

gradient of the loss function with respect to the parameters of the network. We

present the backpropagation algorithm that efficiently calculates the gradient.

20.1 Feedforward Neural Networks

The idea behind neural networks is that many neurons can be joined together

by communication links to carry out complex computations. It is common to

describe the structure of a neural network as a graph whose nodes are the neurons

and each (directed) edge in the graph links the output of some neuron to the

input of another neuron. We will restrict our attention to feedforward network

structures in which the underlying graph does not contain cycles.

A feedforward neural network is described by a directed acyclic graph, G =

(V,E), and a weight function over the edges, w : E → R. Nodes of the graph

correspond to neurons. Each single neuron is modeled as a simple scalar func-

tion, σ : R → R. We will focus on three possible functions for σ: the sign

function, σ(a) = sign(a), the threshold function, σ(a) = 1[a>0], and the sig-

moid function, σ(a) = 1/(1 + exp(−a)), which is a smooth approximation to the

threshold function. We call σ the “activation” function of the neuron. Each edge

in the graph links the output of some neuron to the input of another neuron.

The input of a neuron is obtained by taking a weighted sum of the outputs of

all the neurons connected to it, where the weighting is according to w.

To simplify the description of the calculation performed by the network, we

further assume that the network is organized in layers. That is, the set of nodes

can be decomposed into a union of (nonempty) disjoint subsets, V = ·∪Tt=0Vt,

such that every edge in E connects some node in Vt−1 to some node in Vt, for

some t ∈ [T]. The bottom layer, V0, is called the input layer. It contains n + 1

neurons, where n is the dimensionality of the input space. For every i ∈ [n], the

output of neuron i in V0 is simply xi. The last neuron in V0 is the “constant”

neuron, which always outputs 1. We denote by vt,i the ith neuron of the tth layer

and by ot,i(x) the output of vt,i when the network is fed with the input vector x.

Therefore, for i ∈ [n] we have o0,i(x) = xi and for i = n+ 1 we have o0,i(x) = 1.

We now proceed with the calculation in a layer by layer manner. Suppose we

have calculated the outputs of the neurons at layer t. Then, we can calculate

the outputs of the neurons at layer t + 1 as follows. Fix some vt+1,j ∈ Vt+1.

Let at+1,j(x) denote the input to vt+1,j when the network is fed with the input

vector x. Then,

at+1,j(x) =
∑

r: (vt,r,vt+1,j)∈E

w((vt,r, vt+1,j)) ot,r(x),

270 Neural Networks

and

ot+1,j(x) = σ (at+1,j(x)) .

That is, the input to vt+1,j is a weighted sum of the outputs of the neurons in Vt
that are connected to vt+1,j , where weighting is according to w, and the output

of vt+1,j is simply the application of the activation function σ on its input.

Layers V1, . . . , VT−1 are often called hidden layers. The top layer, VT , is called

the output layer. In simple prediction problems the output layer contains a single

neuron whose output is the output of the network.

We refer to T as the number of layers in the network (excluding V0), or the

“depth” of the network. The size of the network is |V |. The “width” of the

network is maxt |Vt|. An illustration of a layered feedforward neural network of

depth 2, size 10, and width 5, is given in the following. Note that there is a

neuron in the hidden layer that has no incoming edges. This neuron will output

the constant σ(0).

v0,1x1

v0,2x2

v0,3x3

v0,4constant

v1,1

v1,2

v1,3

v1,4

v1,5

v2,1 Output

Hidden

layer

(V1)

Input

layer

(V0)

Output

layer

(V2)

20.2 Learning Neural Networks

Once we have specified a neural network by (V,E, σ, w), we obtain a function

hV,E,σ,w : R|V0|−1 → R|VT |. Any set of such functions can serve as a hypothesis

class for learning. Usually, we define a hypothesis class of neural network predic-

tors by fixing the graph (V,E) as well as the activation function σ and letting

the hypothesis class be all functions of the form hV,E,σ,w for some w : E → R.

The triplet (V,E, σ) is often called the architecture of the network. We denote

the hypothesis class by

HV,E,σ = {hV,E,σ,w : w is a mapping from E to R}. (20.1)

20.3 The Expressive Power of Neural Networks 271

That is, the parameters specifying a hypothesis in the hypothesis class are the

weights over the edges of the network.

We can now study the approximation error, estimation error, and optimization

error of such hypothesis classes. In Section 20.3 we study the approximation

error of HV,E,σ by studying what type of functions hypotheses in HV,E,σ can

implement, in terms of the size of the underlying graph. In Section 20.4 we

study the estimation error of HV,E,σ, for the case of binary classification (i.e.,

VT = 1 and σ is the sign function), by analyzing its VC dimension. Finally, in

Section 20.5 we show that it is computationally hard to learn the class HV,E,σ,

even if the underlying graph is small, and in Section 20.6 we present the most

commonly used heuristic for training HV,E,σ.

20.3 The Expressive Power of Neural Networks

In this section we study the expressive power of neural networks, namely, what

type of functions can be implemented using a neural network. More concretely,

we will fix some architecture, V,E, σ, and will study what functions hypotheses

in HV,E,σ can implement, as a function of the size of V .

We start the discussion with studying which type of Boolean functions (i.e.,

functions from {±1}n to {±1}) can be implemented by HV,E,sign. Observe that

for every computer in which real numbers are stored using b bits, whenever we

calculate a function f : Rn → R on such a computer we in fact calculate a

function g : {±1}nb → {±1}b. Therefore, studying which Boolean functions can

be implemented by HV,E,sign can tell us which functions can be implemented on

a computer that stores real numbers using b bits.

We begin with a simple claim, showing that without restricting the size of the

network, every Boolean function can be implemented using a neural network of

depth 2.

claim 20.1 For every n, there exists a graph (V,E) of depth 2, such that

HV,E,sign contains all functions from {±1}n to {±1}.

Proof We construct a graph with |V0| = n+ 1, |V1| = 2n + 1, and |V2| = 1. Let

E be all possible edges between adjacent layers. Now, let f : {±1}n → {±1}
be some Boolean function. We need to show that we can adjust the weights so

that the network will implement f . Let u1, . . . ,uk be all vectors in {±1}n on

which f outputs 1. Observe that for every i and every x ∈ {±1}n, if x 6= ui
then 〈x,ui〉 ≤ n− 2 and if x = ui then 〈x, ui〉 = n. It follows that the function

gi(x) = sign(〈x,ui〉−n+ 1) equals 1 if and only if x = ui. It follows that we can

adapt the weights between V0 and V1 so that for every i ∈ [k], the neuron v1,i

implements the function gi(x). Next, we observe that f(x) is the disjunction of

272 Neural Networks

the functions gi(x), and therefore can be written as

f(x) = sign

(
k∑
i=1

gi(x) + k − 1

)
,

which concludes our proof.

The preceding claim shows that neural networks can implement any Boolean

function. However, this is a very weak property, as the size of the resulting

network might be exponentially large. In the construction given at the proof of

Claim 20.1, the number of nodes in the hidden layer is exponentially large. This

is not an artifact of our proof, as stated in the following theorem.

theorem 20.2 For every n, let s(n) be the minimal integer such that there

exists a graph (V,E) with |V | = s(n) such that the hypothesis class HV,E,sign
contains all the functions from {0, 1}n to {0, 1}. Then, s(n) is exponential in n.

Similar results hold for HV,E,σ where σ is the sigmoid function.

Proof Suppose that for some (V,E) we have thatHV,E,sign contains all functions

from {0, 1}n to {0, 1}. It follows that it can shatter the set of m = 2n vectors in

{0, 1}n and hence the VC dimension of HV,E,sign is 2n. On the other hand, the

VC dimension of HV,E,sign is bounded by O(|E| log(|E|)) ≤ O(|V |3), as we will

show in the next section. This implies that |V | ≥ Ω(2n/3), which concludes our

proof for the case of networks with the sign activation function. The proof for

the sigmoid case is analogous.

Remark 20.1 It is possible to derive a similar theorem for HV,E,σ for any σ, as

long as we restrict the weights so that it is possible to express every weight using

a number of bits which is bounded by a universal constant. We can even con-

sider hypothesis classes where different neurons can employ different activation

functions, as long as the number of allowed activation functions is also finite.

Which functions can we express using a network of polynomial size? The pre-

ceding claim tells us that it is impossible to express all Boolean functions using

a network of polynomial size. On the positive side, in the following we show

that all Boolean functions that can be calculated in time O(T (n)) can also be

expressed by a network of size O(T (n)2).

theorem 20.3 Let T : N→ N and for every n, let Fn be the set of functions

that can be implemented using a Turing machine using runtime of at most T (n).

Then, there exist constants b, c ∈ R+ such that for every n, there is a graph

(Vn, En) of size at most c T (n)2 + b such that HVn,En,sign contains Fn.

The proof of this theorem relies on the relation between the time complexity

of programs and their circuit complexity (see, for example, Sipser (2006)). In a

nutshell, a Boolean circuit is a type of network in which the individual neurons

20.3 The Expressive Power of Neural Networks 273

implement conjunctions, disjunctions, and negation of their inputs. Circuit com-

plexity measures the size of Boolean circuits required to calculate functions. The

relation between time complexity and circuit complexity can be seen intuitively

as follows. We can model each step of the execution of a computer program as a

simple operation on its memory state. Therefore, the neurons at each layer of the

network will reflect the memory state of the computer at the corresponding time,

and the translation to the next layer of the network involves a simple calculation

that can be carried out by the network. To relate Boolean circuits to networks

with the sign activation function, we need to show that we can implement the

operations of conjunction, disjunction, and negation, using the sign activation

function. Clearly, we can implement the negation operator using the sign activa-

tion function. The following lemma shows that the sign activation function can

also implement conjunctions and disjunctions of its inputs.

lemma 20.4 Suppose that a neuron v, that implements the sign activation

function, has k incoming edges, connecting it to neurons whose outputs are in

{±1}. Then, by adding one more edge, linking a “constant” neuron to v, and

by adjusting the weights on the edges to v, the output of v can implement the

conjunction or the disjunction of its inputs.

Proof Simply observe that if f : {±1}k → {±1} is the conjunction func-

tion, f(x) = ∧ixi, then it can be written as f(x) = sign
(

1− k +
∑k
i=1 xi

)
.

Similarly, the disjunction function, f(x) = ∨ixi, can be written as f(x) =

sign
(
k − 1 +

∑k
i=1 xi

)
.

So far we have discussed Boolean functions. In Exercise 1 we show that neural

networks are universal approximators. That is, for every fixed precision param-

eter, ε > 0, and every Lipschitz function f : [−1, 1]n → [−1, 1], it is possible to

construct a network such that for every input x ∈ [−1, 1]n, the network outputs

a number between f(x) − ε and f(x) + ε. However, as in the case of Boolean

functions, the size of the network here again cannot be polynomial in n. This is

formalized in the following theorem, whose proof is a direct corollary of Theo-

rem 20.2 and is left as an exercise.

theorem 20.5 Fix some ε ∈ (0, 1). For every n, let s(n) be the minimal integer

such that there exists a graph (V,E) with |V | = s(n) such that the hypothesis class

HV,E,σ, with σ being the sigmoid function, can approximate, to within precision

of ε, every 1-Lipschitz function f : [−1, 1]n → [−1, 1]. Then s(n) is exponential

in n.

20.3.1 Geometric Intuition

We next provide several geometric illustrations of functions f : R2 → {±1}
and show how to express them using a neural network with the sign activation

function.

274 Neural Networks

Let us start with a depth 2 network, namely, a network with a single hidden

layer. Each neuron in the hidden layer implements a halfspace predictor. Then,

the single neuron at the output layer applies a halfspace on top of the binary

outputs of the neurons in the hidden layer. As we have shown before, a halfspace

can implement the conjunction function. Therefore, such networks contain all

hypotheses which are an intersection of k − 1 halfspaces, where k is the number

of neurons in the hidden layer; namely, they can express all convex polytopes

with k − 1 faces. An example of an intersection of 5 halfspaces is given in the

following.

We have shown that a neuron in layer V2 can implement a function that

indicates whether x is in some convex polytope. By adding one more layer, and

letting the neuron in the output layer implement the disjunction of its inputs,

we get a network that computes the union of polytopes. An illustration of such

a function is given in the following.

20.4 The Sample Complexity of Neural Networks

Next we discuss the sample complexity of learning the class HV,E,σ. Recall that

the fundamental theorem of learning tells us that the sample complexity of learn-

ing a hypothesis class of binary classifiers depends on its VC dimension. There-

fore, we focus on calculating the VC dimension of hypothesis classes of the form

HV,E,σ, where the output layer of the graph contains a single neuron.

We start with the sign activation function, namely, with HV,E,sign. What is

the VC dimension of this class? Intuitively, since we learn |E| parameters, the

VC dimension should be order of |E|. This is indeed the case, as formalized by

the following theorem.

theorem 20.6 The VC dimension of HV,E,sign is O(|E| log(|E|)).

20.4 The Sample Complexity of Neural Networks 275

Proof To simplify the notation throughout the proof, let us denote the hy-

pothesis class by H. Recall the definition of the growth function, τH(m), from

Section 6.5.1. This function measures maxC⊂X :|C|=m |HC |, where HC is the re-

striction of H to functions from C to {0, 1}. We can naturally extend the defi-

nition for a set of functions from X to some finite set Y, by letting HC be the

restriction of H to functions from C to Y, and keeping the definition of τH(m)

intact.

Our neural network is defined by a layered graph. Let V0, . . . , VT be the layers

of the graph. Fix some t ∈ [T]. By assigning different weights on the edges

between Vt−1 and Vt, we obtain different functions from R|Vt−1| → {±1}|Vt|. Let

H(t) be the class of all possible such mappings from R|Vt−1| → {±1}|Vt|. Then,

H can be written as a composition, H = H(T) ◦ . . . ◦H(1). In Exercise 4 we show

that the growth function of a composition of hypothesis classes is bounded by

the products of the growth functions of the individual classes. Therefore,

τH(m) ≤
T∏
t=1

τH(t)(m).

In addition, each H(t) can be written as a product of function classes, H(t) =

H(t,1)× · · · ×H(t,|Vt|), where each H(t,j) is all functions from layer t− 1 to {±1}
that the jth neuron of layer t can implement. In Exercise 3 we bound product

classes, and this yields

τH(t)(m) ≤
|Vt|∏
i=1

τH(t,i)(m).

Let dt,i be the number of edges that are headed to the ith neuron of layer t.

Since the neuron is a homogenous halfspace hypothesis and the VC dimension

of homogenous halfspaces is the dimension of their input, we have by Sauer’s

lemma that

τH(t,i)(m) ≤
(
em
dt,i

)dt,i
≤ (em)dt,i .

Overall, we obtained that

τH(m) ≤ (em)
∑
t,i dt,i = (em)|E|.

Now, assume that there are m shattered points. Then, we must have τH(m) =

2m, from which we obtain

2m ≤ (em)|E| ⇒ m ≤ |E| log(em)/ log(2).

The claim follows by Lemma A.2.

Next, we consider HV,E,σ, where σ is the sigmoid function. Surprisingly, it

turns out that the VC dimension of HV,E,σ is lower bounded by Ω(|E|2) (see

Exercise 5.) That is, the VC dimension is the number of tunable parameters

squared. It is also possible to upper bound the VC dimension by O(|V |2 |E|2),

but the proof is beyond the scope of this book. In any case, since in practice

276 Neural Networks

we only consider networks in which the weights have a short representation as

floating point numbers with O(1) bits, by using the discretization trick we easily

obtain that such networks have a VC dimension of O(|E|), even if we use the

sigmoid activation function.

20.5 The Runtime of Learning Neural Networks

In the previous sections we have shown that the class of neural networks with an

underlying graph of polynomial size can express all functions that can be imple-

mented efficiently, and that the sample complexity has a favorable dependence

on the size of the network. In this section we turn to the analysis of the time

complexity of training neural networks.

We first show that it is NP hard to implement the ERM rule with respect to

HV,E,sign even for networks with a single hidden layer that contain just 4 neurons

in the hidden layer.

theorem 20.7 Let k ≥ 3. For every n, let (V,E) be a layered graph with n

input nodes, k + 1 nodes at the (single) hidden layer, where one of them is the

constant neuron, and a single output node. Then, it is NP hard to implement the

ERM rule with respect to HV,E,sign.

The proof relies on a reduction from the k-coloring problem and is left as

Exercise 6.

One way around the preceding hardness result could be that for the purpose

of learning, it may suffice to find a predictor h ∈ H with low empirical error,

not necessarily an exact ERM. However, it turns out that even the task of find-

ing weights that result in close-to-minimal empirical error is computationally

infeasible (see (Bartlett & Ben-David 2002)).

One may also wonder whether it may be possible to change the architecture

of the network so as to circumvent the hardness result. That is, maybe ERM

with respect to the original network structure is computationally hard but ERM

with respect to some other, larger, network may be implemented efficiently (see

Chapter 8 for examples of such cases). Another possibility is to use other acti-

vation functions (such as sigmoids, or any other type of efficiently computable

activation functions). There is a strong indication that all of such approaches

are doomed to fail. Indeed, under some cryptographic assumption, the problem

of learning intersections of halfspaces is known to be hard even in the repre-

sentation independent model of learning (see Klivans & Sherstov (2006)). This

implies that, under the same cryptographic assumption, any hypothesis class

which contains intersections of halfspaces cannot be learned efficiently.

A widely used heuristic for training neural networks relies on the SGD frame-

work we studied in Chapter 14. There, we have shown that SGD is a successful

learner if the loss function is convex. In neural networks, the loss function is

highly nonconvex. Nevertheless, we can still implement the SGD algorithm and

20.6 SGD and Backpropagation 277

hope it will find a reasonable solution (as happens to be the case in several

practical tasks).

20.6 SGD and Backpropagation

The problem of finding a hypothesis in HV,E,σ with a low risk amounts to the

problem of tuning the weights over the edges. In this section we show how to

apply a heuristic search for good weights using the SGD algorithm. Throughout

this section we assume that σ is the sigmoid function, σ(a) = 1/(1 + e−a), but

the derivation holds for any differentiable scalar function.

Since E is a finite set, we can think of the weight function as a vector w ∈ R|E|.
Suppose the network has n input neurons and k output neurons, and denote by

hw : Rn → Rk the function calculated by the network if the weight function is

defined by w. Let us denote by ∆(hw(x),y) the loss of predicting hw(x) when

the target is y ∈ Y. For concreteness, we will take ∆ to be the squared loss,

∆(hw(x), y) = 1
2‖hw(x) − y‖2; however, similar derivation can be obtained for

every differentiable function. Finally, given a distribution D over the examples

domain, Rn × Rk, let LD(w) be the risk of the network, namely,

LD(w) = E
(x,y)∼D

[∆(hw(x),y)] .

Recall the SGD algorithm for minimizing the risk function LD(w). We repeat

the pseudocode from Chapter 14 with a few modifications, which are relevant

to the neural network application because of the nonconvexity of the objective

function. First, while in Chapter 14 we initialized w to be the zero vector, here

we initialize w to be a randomly chosen vector with values close to zero. This

is because an initialization with the zero vector will lead all hidden neurons to

have the same weights (if the network is a full layered network). In addition,

the hope is that if we repeat the SGD procedure several times, where each time

we initialize the process with a new random vector, one of the runs will lead

to a good local minimum. Second, while a fixed step size, η, is guaranteed to

be good enough for convex problems, here we utilize a variable step size, ηt, as

defined in Section 14.4.2. Because of the nonconvexity of the loss function, the

choice of the sequence ηt is more significant, and it is tuned in practice by a trial

and error manner. Third, we output the best performing vector on a validation

set. In addition, it is sometimes helpful to add regularization on the weights,

with parameter λ. That is, we try to minimize LD(w) + λ
2 ‖w‖

2. Finally, the

gradient does not have a closed form solution. Instead, it is implemented using

the backpropagation algorithm, which will be described in the sequel.

278 Neural Networks

SGD for Neural Networks

parameters:

number of iterations τ

step size sequence η1, η2, . . . , ητ
regularization parameter λ > 0

input:

layered graph (V,E)

differentiable activation function σ : R→ R
initialize:

choose w(1) ∈ R|E| at random

(from a distribution s.t. w(1) is close enough to 0)

for i = 1, 2, . . . , τ

sample (x,y) ∼ D
calculate gradient vi = backpropagation(x,y,w, (V,E), σ)

update w(i+1) = w(i) − ηi(vi + λw(i))

output:

w̄ is the best performing w(i) on a validation set

Backpropagation

input:

example (x,y), weight vector w, layered graph (V,E),

activation function σ : R→ R
initialize:

denote layers of the graph V0, . . . , VT where Vt = {vt,1, . . . , vt,kt}
define Wt,i,j as the weight of (vt,j , vt+1,i)

(where we set Wt,i,j = 0 if (vt,j , vt+1,i) /∈ E)

forward:

set o0 = x

for t = 1, . . . , T

for i = 1, . . . , kt

set at,i =
∑kt−1

j=1 Wt−1,i,j ot−1,j

set ot,i = σ(at,i)

backward:

set δT = oT − y

for t = T − 1, T − 2, . . . , 1

for i = 1, . . . , kt

δt,i =
∑kt+1

j=1 Wt,j,i δt+1,j σ
′(at+1,j)

output:

foreach edge (vt−1,j , vt,i) ∈ E
set the partial derivative to δt,i σ

′(at,i) ot−1,j

20.6 SGD and Backpropagation 279

Explaining How Backpropagation Calculates the Gradient:
We next explain how the backpropagation algorithm calculates the gradient of

the loss function on an example (x,y) with respect to the vector w. Let us first

recall a few definitions from vector calculus. Each element of the gradient is

the partial derivative with respect to the variable in w corresponding to one of

the edges of the network. Recall the definition of a partial derivative. Given a

function f : Rn → R, the partial derivative with respect to the ith variable at w

is obtained by fixing the values of w1, . . . , wi−1, wi+1, wn, which yields the scalar

function g : R → R defined by g(a) = f((w1, . . . , wi−1, wi + a,wi+1, . . . , wn)),

and then taking the derivative of g at 0. For a function with multiple outputs,

f : Rn → Rm, the Jacobian of f at w ∈ Rn, denoted Jw(f), is the m× n matrix

whose i, j element is the partial derivative of fi : Rn → R w.r.t. its jth variable

at w. Note that if m = 1 then the Jacobian matrix is the gradient of the function

(represented as a row vector). Two examples of Jacobian calculations, which we

will later use, are as follows.

• Let f(w) = Aw for A ∈ Rm,n. Then Jw(f) = A.

• For every n, we use the notation σ to denote the function from Rn to Rn
which applies the sigmoid function element-wise. That is, α = σ(θ) means

that for every i we have αi = σ(θi) = 1
1+exp(−θi) . It is easy to verify

that Jθ(σ) is a diagonal matrix whose (i, i) entry is σ′(θi), where σ′ is

the derivative function of the (scalar) sigmoid function, namely, σ′(θi) =
1

(1+exp(θi))(1+exp(−θi)) . We also use the notation diag(σ′(θ)) to denote this

matrix.

The chain rule for taking the derivative of a composition of functions can be

written in terms of the Jacobian as follows. Given two functions f : Rn → Rm
and g : Rk → Rn, we have that the Jacobian of the composition function,

(f ◦ g) : Rk → Rm, at w, is

Jw(f ◦ g) = Jg(w)(f)Jw(g).

For example, for g(w) = Aw, where A ∈ Rn,k, we have that

Jw(σ ◦ g) = diag(σ′(Aw))A.

To describe the backpropagation algorithm, let us first decompose V into the

layers of the graph, V = ·∪Tt=0Vt. For every t, let us write Vt = {vt,1, . . . , vt,kt},
where kt = |Vt|. In addition, for every t denote Wt ∈ Rkt+1,kt a matrix which

gives a weight to every potential edge between Vt and Vt+1. If the edge exists in

E then we set Wt,i,j to be the weight, according to w, of the edge (vt,j , vt+1,i).

Otherwise, we add a “phantom” edge and set its weight to be zero, Wt,i,j = 0.

Since when calculating the partial derivative with respect to the weight of some

edge we fix all other weights, these additional “phantom” edges have no effect

on the partial derivative with respect to existing edges. It follows that we can

assume, without loss of generality, that all edges exist, that is, E = ∪t(Vt×Vt+1).

280 Neural Networks

Next, we discuss how to calculate the partial derivatives with respect to the

edges from Vt−1 to Vt, namely, with respect to the elements in Wt−1. Since we

fix all other weights of the network, it follows that the outputs of all the neurons

in Vt−1 are fixed numbers which do not depend on the weights in Wt−1. Denote

the corresponding vector by ot−1. In addition, let us denote by `t : Rkt → R the

loss function of the subnetwork defined by layers Vt, . . . , VT as a function of the

outputs of the neurons in Vt. The input to the neurons of Vt can be written as

at = Wt−1ot−1 and the output of the neurons of Vt is ot = σ(at). That is, for

every j we have ot,j = σ(at,j). We obtain that the loss, as a function of Wt−1,

can be written as

gt(Wt−1) = `t(ot) = `t(σ(at)) = `t(σ(Wt−1ot−1)).

It would be convenient to rewrite this as follows. Let wt−1 ∈ Rkt−1kt be the

column vector obtained by concatenating the rows of Wt−1 and then taking the

transpose of the resulting long vector. Define by Ot−1 the kt × (kt−1kt) matrix

Ot−1 =

o>t−1 0 · · · 0

0 o>t−1 · · · 0

...
...

. . .
...

0 0 · · · o>t−1

 . (20.2)

Then, Wt−1ot−1 = Ot−1wt−1, so we can also write

gt(wt−1) = `t(σ(Ot−1 wt−1)).

Therefore, applying the chain rule, we obtain that

Jwt−1
(gt) = Jσ(Ot−1wt−1)(`t) diag(σ′(Ot−1wt−1))Ot−1.

Using our notation we have ot = σ(Ot−1wt−1) and at = Ot−1wt−1, which yields

Jwt−1
(gt) = Jot(`t) diag(σ′(at))Ot−1.

Let us also denote δt = Jot(`t). Then, we can further rewrite the preceding as

Jwt−1
(gt) =

(
δt,1 σ

′(at,1) o>t−1 , . . . , δt,kt σ
′(at,kt) o>t−1

)
. (20.3)

It is left to calculate the vector δt = Jot(`t) for every t. This is the gradient

of `t at ot. We calculate this in a recursive manner. First observe that for the

last layer we have that `T (u) = ∆(u,y), where ∆ is the loss function. Since we

assume that ∆(u,y) = 1
2‖u−y‖2 we obtain that Ju(`T) = (u−y). In particular,

δT = JoT (`T) = (oT − y). Next, note that

`t(u) = `t+1(σ(Wtu)).

Therefore, by the chain rule,

Ju(`t) = Jσ(Wtu)(`t+1)diag(σ′(Wtu))Wt.

20.7 Summary 281

In particular,

δt = Jot(`t) = Jσ(Wtot)(`t+1)diag(σ′(Wtot))Wt

= Jot+1
(`t+1)diag(σ′(at+1))Wt

= δt+1 diag(σ′(at+1))Wt.

In summary, we can first calculate the vectors {at,ot} from the bottom of

the network to its top. Then, we calculate the vectors {δt} from the top of

the network back to its bottom. Once we have all of these vectors, the partial

derivatives are easily obtained using Equation (20.3). We have thus shown that

the pseudocode of backpropagation indeed calculates the gradient.

20.7 Summary

Neural networks over graphs of size s(n) can be used to describe hypothesis

classes of all predictors that can be implemented in runtime of O(
√
s(n)). We

have also shown that their sample complexity depends polynomially on s(n)

(specifically, it depends on the number of edges in the network). Therefore, classes

of neural network hypotheses seem to be an excellent choice. Regrettably, the

problem of training the network on the basis of training data is computationally

hard. We have presented the SGD framework as a heuristic approach for training

neural networks and described the backpropagation algorithm which efficiently

calculates the gradient of the loss function with respect to the weights over the

edges.

20.8 Bibliographic Remarks

Neural networks were extensively studied in the 1980s and early 1990s, but with

mixed empirical success. In recent years, a combination of algorithmic advance-

ments, as well as increasing computational power and data size, has led to a

breakthrough in the effectiveness of neural networks. In particular, “deep net-

works” (i.e., networks of more than 2 layers) have shown very impressive practical

performance on a variety of domains. A few examples include convolutional net-

works (Lecun & Bengio 1995), restricted Boltzmann machines (Hinton, Osindero

& Teh 2006), auto-encoders (Ranzato, Huang, Boureau & Lecun 2007, Bengio &

LeCun 2007, Collobert & Weston 2008, Lee, Grosse, Ranganath & Ng 2009, Le,

Ranzato, Monga, Devin, Corrado, Chen, Dean & Ng 2012), and sum-product

networks (Livni, Shalev-Shwartz & Shamir 2013, Poon & Domingos 2011). See

also (Bengio 2009) and the references therein.

The expressive power of neural networks and the relation to circuit complexity

have been extensively studied in (Parberry 1994). For the analysis of the sample

complexity of neural networks we refer the reader to (Anthony & Bartlet 1999).

Our proof technique of Theorem 20.6 is due to Kakade and Tewari lecture notes.

282 Neural Networks

Klivans & Sherstov (2006) have shown that for any c > 0, intersections of nc

halfspaces over {±1}n are not efficiently PAC learnable, even if we allow repre-

sentation independent learning. This hardness result relies on the cryptographic

assumption that there is no polynomial time solution to the unique-shortest-

vector problem. As we have argued, this implies that there cannot be an efficient

algorithm for training neural networks, even if we allow larger networks or other

activation functions that can be implemented efficiently.

The backpropagation algorithm has been introduced in Rumelhart, Hinton &

Williams (1986).

20.9 Exercises

1. Neural Networks are universal approximators: Let f : [−1, 1]n →
[−1, 1] be a ρ-Lipschitz function. Fix some ε > 0. Construct a neural net-

work N : [−1, 1]n → [−1, 1], with the sigmoid activation function, such that

for every x ∈ [−1, 1]n it holds that |f(x)−N(x)| ≤ ε.
Hint: Similarly to the proof of Theorem 19.3, partition [−1, 1]n into small

boxes. Use the Lipschitzness of f to show that it is approximately constant

at each box. Finally, show that a neural network can first decide which box

the input vector belongs to, and then predict the averaged value of f at that

box.

2. Prove Theorem 20.5.

Hint: For every f : {−1, 1}n → {−1, 1} construct a 1-Lipschitz function

g : [−1, 1]n → [−1, 1] such that if you can approximate g then you can express

f .

3. Growth function of product: For i = 1, 2, let Fi be a set of functions from

X to Yi. Define H = F1 × F2 to be the Cartesian product class. That is, for

every f1 ∈ F1 and f2 ∈ F2, there exists h ∈ H such that h(x) = (f1(x), f2(x)).

Prove that τH(m) ≤ τF1
(m) τF2

(m).

4. Growth function of composition: Let F1 be a set of functions from X
to Z and let F2 be a set of functions from Z to Y. Let H = F2 ◦ F1 be the

composition class. That is, for every f1 ∈ F1 and f2 ∈ F2, there exists h ∈ H
such that h(x) = f2(f1(x)). Prove that τH(m) ≤ τF2

(m)τF1
(m).

5. VC of sigmoidal networks: In this exercise we show that there is a graph

(V,E) such that the VC dimension of the class of neural networks over these

graphs with the sigmoid activation function is Ω(|E|2). Note that for every ε >

0, the sigmoid activation function can approximate the threshold activation

function, 1[
∑
i xi]

, up to accuracy ε. To simplify the presentation, throughout

the exercise we assume that we can exactly implement the activation function

1[
∑
i xi>0] using a sigmoid activation function.

Fix some n.

1. Construct a network, N1, with O(n) weights, which implements a function

from R to {0, 1}n and satisfies the following property. For every x ∈ {0, 1}n,

20.9 Exercises 283

if we feed the network with the real number 0.x1x2 . . . xn, then the output

of the network will be x.

Hint: Denote α = 0.x1x2 . . . xn and observe that 10kα− 0.5 is at least 0.5

if xk = 1 and is at most −0.3 if xk = −1.

2. Construct a network, N2, with O(n) weights, which implements a function

from [n] to {0, 1}n such that N2(i) = ei for all i. That is, upon receiving

the input i, the network outputs the vector of all zeros except 1 at the i’th

neuron.

3. Let α1, . . . , αn be n real numbers such that every αi is of the form 0.a
(i)
1 a

(i)
2 . . . a

(i)
n ,

with a
(i)
j ∈ {0, 1}. Construct a network, N3, with O(n) weights, which im-

plements a function from [n] to R, and satisfies N2(i) = αi for every i ∈ [n].

4. Combine N1, N3 to obtain a network that receives i ∈ [n] and output a(i).

5. Construct a network N4 that receives (i, j) ∈ [n]× [n] and outputs a
(i)
j .

Hint: Observe that the AND function over {0, 1}2 can be calculated using

O(1) weights.

6. Conclude that there is a graph with O(n) weights such that the VC di-

mension of the resulting hypothesis class is n2.

6. Prove Theorem 20.7.

Hint: The proof is similar to the hardness of learning intersections of halfs-

paces – see Exercise 32 in Chapter 8.

Part III

Additional Learning Models

21 Online Learning

In this chapter we describe a different model of learning, which is called online

learning. Previously, we studied the PAC learning model, in which the learner

first receives a batch of training examples, uses the training set to learn a hy-

pothesis, and only when learning is completed uses the learned hypothesis for

predicting the label of new examples. In our papayas learning problem, this

means that we should first buy a bunch of papayas and taste them all. Then, we

use all of this information to learn a prediction rule that determines the taste

of new papayas. In contrast, in online learning there is no separation between a

training phase and a prediction phase. Instead, each time we buy a papaya, it

is first considered a test example since we should predict whether it is going to

taste good. Then, after taking a bite from the papaya, we know the true label,

and the same papaya can be used as a training example that can help us improve

our prediction mechanism for future papayas.

Concretely, online learning takes place in a sequence of consecutive rounds.

On each online round, the learner first receives an instance (the learner buys

a papaya and knows its shape and color, which form the instance). Then, the

learner is required to predict a label (is the papaya tasty?). At the end of the

round, the learner obtains the correct label (he tastes the papaya and then knows

whether it is tasty or not). Finally, the learner uses this information to improve

his future predictions.

To analyze online learning, we follow a similar route to our study of PAC

learning. We start with online binary classification problems. We consider both

the realizable case, in which we assume, as prior knowledge, that all the labels are

generated by some hypothesis from a given hypothesis class, and the unrealizable

case, which corresponds to the agnostic PAC learning model. In particular, we

present an important algorithm called Weighted-Majority. Next, we study online

learning problems in which the loss function is convex. Finally, we present the

Perceptron algorithm as an example of the use of surrogate convex loss functions

in the online learning model.

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

288 Online Learning

21.1 Online Classification in the Realizable Case

Online learning is performed in a sequence of consecutive rounds, where at round

t the learner is given an instance, xt, taken from an instance domain X , and is

required to provide its label. We denote the predicted label by pt. After predicting

the label, the correct label, yt ∈ {0, 1}, is revealed to the learner. The learner’s

goal is to make as few prediction mistakes as possible during this process. The

learner tries to deduce information from previous rounds so as to improve its

predictions on future rounds.

Clearly, learning is hopeless if there is no correlation between past and present

rounds. Previously in the book, we studied the PAC model in which we assume

that past and present examples are sampled i.i.d. from the same distribution

source. In the online learning model we make no statistical assumptions regard-

ing the origin of the sequence of examples. The sequence is allowed to be deter-

ministic, stochastic, or even adversarially adaptive to the learner’s own behavior

(as in the case of spam e-mail filtering). Naturally, an adversary can make the

number of prediction mistakes of our online learning algorithm arbitrarily large.

For example, the adversary can present the same instance on each online round,

wait for the learner’s prediction, and provide the opposite label as the correct

label.

To make nontrivial statements we must further restrict the problem. The real-

izability assumption is one possible natural restriction. In the realizable case, we

assume that all the labels are generated by some hypothesis, h? : X → Y. Fur-

thermore, h? is taken from a hypothesis class H, which is known to the learner.

This is analogous to the PAC learning model we studied in Chapter 3. With this

restriction on the sequence, the learner should make as few mistakes as possible,

assuming that both h? and the sequence of instances can be chosen by an ad-

versary. For an online learning algorithm, A, we denote by MA(H) the maximal

number of mistakes A might make on a sequence of examples which is labeled by

some h? ∈ H. We emphasize again that both h? and the sequence of instances

can be chosen by an adversary. A bound on MA(H) is called a mistake-bound and

we will study how to design algorithms for which MA(H) is minimal. Formally:

definition 21.1 (Mistake Bounds, Online Learnability) Let H be a hypoth-

esis class and let A be an online learning algorithm. Given any sequence S =

(x1, h
?(y1)), . . . , (xT , h

?(yT)), where T is any integer and h? ∈ H, let MA(S) be

the number of mistakes A makes on the sequence S. We denote by MA(H) the

supremum of MA(S) over all sequences of the above form. A bound of the form

MA(H) ≤ B <∞ is called a mistake bound. We say that a hypothesis class H is

online learnable if there exists an algorithm A for which MA(H) ≤ B <∞.

Our goal is to study which hypothesis classes are learnable in the online model,

and in particular to find good learning algorithms for a given hypothesis class.

Remark 21.1 Throughout this section and the next, we ignore the computa-

21.1 Online Classification in the Realizable Case 289

tional aspect of learning, and do not restrict the algorithms to be efficient. In

Section 21.3 and Section 21.4 we study efficient online learning algorithms.

To simplify the presentation, we start with the case of a finite hypothesis class,

namely, |H| <∞.

In PAC learning, we identified ERM as a good learning algorithm, in the sense

that if H is learnable then it is learnable by the rule ERMH. A natural learning

rule for online learning is to use (at any online round) any ERM hypothesis,

namely, any hypothesis which is consistent with all past examples.

Consistent

input: A finite hypothesis class H
initialize: V1 = H
for t = 1, 2, . . .

receive xt
choose any h ∈ Vt
predict pt = h(xt)

receive true label yt = h?(xt)

update Vt+1 = {h ∈ Vt : h(xt) = yt}

The Consistent algorithm maintains a set, Vt, of all the hypotheses which

are consistent with (x1, y1), . . . , (xt−1, yt−1). This set is often called the version

space. It then picks any hypothesis from Vt and predicts according to this hy-

pothesis.

Obviously, whenever Consistent makes a prediction mistake, at least one

hypothesis is removed from Vt. Therefore, after making M mistakes we have

|Vt| ≤ |H| −M . Since Vt is always nonempty (by the realizability assumption it

contains h?) we have 1 ≤ |Vt| ≤ |H| −M . Rearranging, we obtain the following:

corollary 21.2 Let H be a finite hypothesis class. The Consistent algorithm

enjoys the mistake bound MConsistent(H) ≤ |H| − 1.

It is rather easy to construct a hypothesis class and a sequence of examples on

which Consistent will indeed make |H|−1 mistakes (see Exercise 1). Therefore,

we present a better algorithm in which we choose h ∈ Vt in a smarter way. We

shall see that this algorithm is guaranteed to make exponentially fewer mistakes.

Halving

input: A finite hypothesis class H
initialize: V1 = H
for t = 1, 2, . . .

receive xt
predict pt = argmaxr∈{0,1} |{h ∈ Vt : h(xt) = r}|

(in case of a tie predict pt = 1)

receive true label yt = h?(xt)

update Vt+1 = {h ∈ Vt : h(xt) = yt}

290 Online Learning

theorem 21.3 Let H be a finite hypothesis class. The Halving algorithm

enjoys the mistake bound MHalving(H) ≤ log2(|H|).

Proof We simply note that whenever the algorithm errs we have |Vt+1| ≤ |Vt|/2,

(hence the name Halving). Therefore, if M is the total number of mistakes, we

have

1 ≤ |VT+1| ≤ |H| 2−M .

Rearranging this inequality we conclude our proof.

Of course, Halving’s mistake bound is much better than Consistent’s mistake

bound. We already see that online learning is different from PAC learning—while

in PAC, any ERM hypothesis is good, in online learning choosing an arbitrary

ERM hypothesis is far from being optimal.

21.1.1 Online Learnability

We next take a more general approach, and aim at characterizing online learn-

ability. In particular, we target the following question: What is the optimal online

learning algorithm for a given hypothesis class H?

We present a dimension of hypothesis classes that characterizes the best achiev-

able mistake bound. This measure was proposed by Nick Littlestone and we

therefore refer to it as Ldim(H).

To motivate the definition of Ldim it is convenient to view the online learning

process as a game between two players: the learner versus the environment. On

round t of the game, the environment picks an instance xt, the learner predicts a

label pt ∈ {0, 1}, and finally the environment outputs the true label, yt ∈ {0, 1}.
Suppose that the environment wants to make the learner err on the first T rounds

of the game. Then, it must output yt = 1 − pt, and the only question is how it

should choose the instances xt in such a way that ensures that for some h? ∈ H
we have yt = h?(xt) for all t ∈ [T].

A strategy for an adversarial environment can be formally described as a

binary tree, as follows. Each node of the tree is associated with an instance from

X . Initially, the environment presents to the learner the instance associated with

the root of the tree. Then, if the learner predicts pt = 1 the environment will

declare that this is a wrong prediction (i.e., yt = 0) and will traverse to the right

child of the current node. If the learner predicts pt = 0 then the environment

will set yt = 1 and will traverse to the left child. This process will continue and

at each round, the environment will present the instance associated with the

current node.

Formally, consider a complete binary tree of depth T (we define the depth of

the tree as the number of edges in a path from the root to a leaf). We have

2T+1 − 1 nodes in such a tree, and we attach an instance to each node. Let

v1, . . . ,v2T+1−1 be these instances. We start from the root of the tree, and set

x1 = v1. At round t, we set xt = vit where it is the current node. At the end of

21.1 Online Classification in the Realizable Case 291

v1

v2 v3

h1 h2 h3 h4

v1 0 0 1 1
v2 0 1 ∗ ∗
v3 ∗ ∗ 0 1

Figure 21.1 An illustration of a shattered tree of depth 2. The dashed path
corresponds to the sequence of examples ((v1, 1), (v3, 0)). The tree is shattered by
H = {h1, h2, h3, h4}, where the predictions of each hypothesis in H on the instances
v1,v2,v3 is given in the table (the ’*’ mark means that hj(vi) can be either 1 or 0).

round t, we go to the left child of it if yt = 0 or to the right child if yt = 1. That

is, it+1 = 2it+yt. Unraveling the recursion we obtain it = 2t−1 +
∑t−1
j=1 yj 2t−1−j .

The preceding strategy for the environment succeeds only if for every (y1, . . . , yT)

there exists h ∈ H such that yt = h(xt) for all t ∈ [T]. This leads to the following

definition.

definition 21.4 (H Shattered Tree) A shattered tree of depth d is a sequence

of instances v1, . . . ,v2d−1 in X such that for every labeling (y1, . . . , yd) ∈ {0, 1}d
there exists h ∈ H such that for all t ∈ [d] we have h(vit) = yt where it =

2t−1 +
∑t−1
j=1 yj 2t−1−j .

An illustration of a shattered tree of depth 2 is given in Figure 21.1.

definition 21.5 (Littlestone’s Dimension (Ldim)) Ldim(H) is the maximal

integer T such that there exists a shattered tree of depth T , which is shattered

by H.

The definition of Ldim and the discussion above immediately imply the fol-

lowing:

lemma 21.6 No algorithm can have a mistake bound strictly smaller than

Ldim(H); namely, for every algorithm, A, we have MA(H) ≥ Ldim(H).

Proof Let T = Ldim(H) and let v1, . . . ,v2T−1 be a sequence that satisfies the

requirements in the definition of Ldim. If the environment sets xt = vit and

yt = 1−pt for all t ∈ [T], then the learner makes T mistakes while the definition

of Ldim implies that there exists a hypothesis h ∈ H such that yt = h(xt) for all

t.

Let us now give several examples.

Example 21.2 Let H be a finite hypothesis class. Clearly, any tree that is shat-

tered by H has depth of at most log2(|H|). Therefore, Ldim(H) ≤ log2(|H|).
Another way to conclude this inequality is by combining Lemma 21.6 with The-

orem 21.3.

Example 21.3 Let X = {1, . . . , d} and H = {h1, . . . , hd} where hj(x) = 1 iff

292 Online Learning

x = j. Then, it is easy to show that Ldim(H) = 1 while |H| = d can be arbitrarily

large. Therefore, this example shows that Ldim(H) can be significantly smaller

than log2(|H|).

Example 21.4 Let X = [0, 1] and H = {x 7→ 1[x<a] : a ∈ [0, 1]}; namely, H is

the class of thresholds on the interval [0, 1]. Then, Ldim(H) = ∞. To see this,

consider the tree

1/2

1/4

1/8 3/8

3/4

5/8 7/8

This tree is shattered by H. And, because of the density of the reals, this tree

can be made arbitrarily deep.

Lemma 21.6 states that Ldim(H) lower bounds the mistake bound of any

algorithm. Interestingly, there is a standard algorithm whose mistake bound

matches this lower bound. The algorithm is similar to the Halving algorithm.

Recall that the prediction of Halving is made according to a majority vote of

the hypotheses which are consistent with previous examples. We denoted this

set by Vt. Put another way, Halving partitions Vt into two sets: V +
t = {h ∈ Vt :

h(xt) = 1} and V −t = {h ∈ Vt : h(xt) = 0}. It then predicts according to the

larger of the two groups. The rationale behind this prediction is that whenever

Halving makes a mistake it ends up with |Vt+1| ≤ 0.5 |Vt|.
The optimal algorithm we present in the following uses the same idea, but

instead of predicting according to the larger class, it predicts according to the

class with larger Ldim.

Standard Optimal Algorithm (SOA)

input: A hypothesis class H
initialize: V1 = H
for t = 1, 2, . . .

receive xt

for r ∈ {0, 1} let V
(r)
t = {h ∈ Vt : h(xt) = r}

predict pt = argmaxr∈{0,1} Ldim(V
(r)
t)

(in case of a tie predict pt = 1)

receive true label yt
update Vt+1 = {h ∈ Vt : h(xt) = yt}

The following lemma formally establishes the optimality of the preceding al-

gorithm.

21.1 Online Classification in the Realizable Case 293

lemma 21.7 SOA enjoys the mistake bound MSOA(H) ≤ Ldim(H).

Proof It suffices to prove that whenever the algorithm makes a prediction mis-

take we have Ldim(Vt+1) ≤ Ldim(Vt)− 1. We prove this claim by assuming the

contrary, that is, Ldim(Vt+1) = Ldim(Vt). If this holds true, then the definition

of pt implies that Ldim(V
(r)
t) = Ldim(Vt) for both r = 1 and r = 0. But, then

we can construct a shaterred tree of depth Ldim(Vt) + 1 for the class Vt, which

leads to the desired contradiction.

Combining Lemma 21.7 and Lemma 21.6 we obtain:

corollary 21.8 Let H be any hypothesis class. Then, the standard optimal

algorithm enjoys the mistake bound MSOA(H) = Ldim(H) and no other algorithm

can have MA(H) < Ldim(H).

Comparison to VC Dimension
In the PAC learning model, learnability is characterized by the VC dimension of

the class H. Recall that the VC dimension of a class H is the maximal number

d such that there are instances x1, . . . ,xd that are shattered by H. That is, for

any sequence of labels (y1, . . . , yd) ∈ {0, 1}d there exists a hypothesis h ∈ H
that gives exactly this sequence of labels. The following theorem relates the VC

dimension to the Littlestone dimension.

theorem 21.9 For any class H, VCdim(H) ≤ Ldim(H), and there are classes

for which strict inequality holds. Furthermore, the gap can be arbitrarily larger.

Proof We first prove that VCdim(H) ≤ Ldim(H). Suppose VCdim(H) = d and

let x1, . . . ,xd be a shattered set. We now construct a complete binary tree of

instances v1, . . . ,v2d−1, where all nodes at depth i are set to be xi – see the

following illustration:

x1

x2

x3 x3

x2

x3 x3

Now, the definition of a shattered set clearly implies that we got a valid shattered

tree of depth d, and we conclude that VCdim(H) ≤ Ldim(H). To show that the

gap can be arbitrarily large simply note that the class given in Example 21.4 has

VC dimension of 1 whereas its Littlestone dimension is infinite.

294 Online Learning

21.2 Online Classification in the Unrealizable Case

In the previous section we studied online learnability in the realizable case. We

now consider the unrealizable case. Similarly to the agnostic PAC model, we

no longer assume that all labels are generated by some h? ∈ H, but we require

the learner to be competitive with the best fixed predictor from H. This is

captured by the regret of the algorithm, which measures how “sorry” the learner

is, in retrospect, not to have followed the predictions of some hypothesis h ∈ H.

Formally, the regret of an algorithm A relative to h when running on a sequence

of T examples is defined as

RegretA(h, T) = sup
(x1,y1),...,(xT ,yT)

[
T∑
t=1

|pt − yt| −
T∑
t=1

|h(xt)− yt|

]
, (21.1)

and the regret of the algorithm relative to a hypothesis class H is

RegretA(H, T) = sup
h∈H

RegretA(h, T). (21.2)

We restate the learner’s goal as having the lowest possible regret relative to H.

An interesting question is whether we can derive an algorithm with low regret,

meaning that RegretA(H, T) grows sublinearly with the number of rounds, T ,

which implies that the difference between the error rate of the learner and the

best hypothesis in H tends to zero as T goes to infinity.

We first show that this is an impossible mission—no algorithm can obtain a

sublinear regret bound even if |H| = 2. Indeed, consider H = {h0, h1}, where h0

is the function that always returns 0 and h1 is the function that always returns

1. An adversary can make the number of mistakes of any online algorithm be

equal to T , by simply waiting for the learner’s prediction and then providing

the opposite label as the true label. In contrast, for any sequence of true labels,

y1, . . . , yT , let b be the majority of labels in y1, . . . , yT , then the number of

mistakes of hb is at most T/2. Therefore, the regret of any online algorithm

might be at least T −T/2 = T/2, which is not sublinear in T . This impossibility

result is attributed to Cover (Cover 1965).

To sidestep Cover’s impossibility result, we must further restrict the power

of the adversarial environment. We do so by allowing the learner to randomize

his predictions. Of course, this by itself does not circumvent Cover’s impossibil-

ity result, since in deriving this result we assumed nothing about the learner’s

strategy. To make the randomization meaningful, we force the adversarial envir-

onment to decide on yt without knowing the random coins flipped by the learner

on round t. The adversary can still know the learner’s forecasting strategy and

even the random coin flips of previous rounds, but it does not know the actual

value of the random coin flips used by the learner on round t. With this (mild)

change of game, we analyze the expected number of mistakes of the algorithm,

where the expectation is with respect to the learner’s own randomization. That

is, if the learner outputs ŷt where P[ŷt = 1] = pt, then the expected loss he pays

21.2 Online Classification in the Unrealizable Case 295

on round t is

P[ŷt 6= yt] = |pt − yt|.

Put another way, instead of having the predictions of the learner being in {0, 1}
we allow them to be in [0, 1], and interpret pt ∈ [0, 1] as the probability to predict

the label 1 on round t.

With this assumption it is possible to derive a low regret algorithm. In partic-

ular, we will prove the following theorem.

theorem 21.10 For every hypothesis class H, there exists an algorithm for

online classification, whose predictions come from [0, 1], that enjoys the regret

bound

∀h ∈ H,
T∑
t=1

|pt−yt|−
T∑
t=1

|h(xt)−yt| ≤
√

2 min{log(|H|) , Ldim(H) log(eT)}T .

Furthermore, no algorithm can achieve an expected regret bound smaller than

Ω
(√

Ldim(H)T
)

.

We will provide a constructive proof of the upper bound part of the preceding

theorem. The proof of the lower bound part can be found in (Ben-David, Pal, &

Shalev-Shwartz 2009).

The proof of Theorem 21.10 relies on the Weighted-Majority algorithm for

learning with expert advice. This algorithm is important by itself and we dedicate

the next subsection to it.

21.2.1 Weighted-Majority

Weighted-majority is an algorithm for the problem of prediction with expert ad-

vice. In this online learning problem, on round t the learner has to choose the

advice of d given experts. We also allow the learner to randomize his choice by

defining a distribution over the d experts, that is, picking a vector w(t) ∈ [0, 1]d,

with
∑
i w

(t)
i = 1, and choosing the ith expert with probability w

(t)
i . After the

learner chooses an expert, it receives a vector of costs, vt ∈ [0, 1]d, where vt,i
is the cost of following the advice of the ith expert. If the learner’s predic-

tions are randomized, then its loss is defined to be the averaged cost, namely,∑
i w

(t)
i vt,i = 〈w(t),vt〉. The algorithm assumes that the number of rounds T is

given. In Exercise 4 we show how to get rid of this dependence using the doubling

trick.

296 Online Learning

Weighted-Majority

input: number of experts, d ; number of rounds, T

parameter: η =
√

2 log(d)/T

initialize: w̃(1) = (1, . . . , 1)

for t = 1, 2, . . .

set w(t) = w̃(t)/Zt where Zt =
∑
i w̃

(t)
i

choose expert i at random according to P[i] = w
(t)
i

receive costs of all experts vt ∈ [0, 1]d

pay cost 〈w(t),vt〉
update rule ∀i, w̃(t+1)

i = w̃
(t)
i e−ηvt,i

The following theorem is key for analyzing the regret bound of Weighted-

Majority.

theorem 21.11 Assuming that T > 2 log(d), the Weighted-Majority algo-

rithm enjoys the bound

T∑
t=1

〈w(t),vt〉 −min
i∈[d]

T∑
t=1

vt,i ≤
√

2 log(d)T .

Proof We have:

log
Zt+1

Zt
= log

∑
i

w̃
(t)
i

Zt
e−ηvt,i = log

∑
i

w
(t)
i e−ηvt,i .

Using the inequality e−a ≤ 1 − a + a2/2, which holds for all a ∈ (0, 1), and the

fact that
∑
i w

(t)
i = 1, we obtain

log
Zt+1

Zt
≤ log

∑
i

w
(t)
i

(
1− ηvt,i + η2v2

t,i/2
)

= log
(
1−

∑
i

w
(t)
i

(
ηvt,i − η2v2

t,i/2
)

︸ ︷︷ ︸
def
= b

)
.

Next, note that b ∈ (0, 1). Therefore, taking log of the two sides of the inequality

1− b ≤ e−b we obtain the inequality log(1− b) ≤ −b, which holds for all b ≤ 1,

and obtain

log
Zt+1

Zt
≤ −

∑
i

w
(t)
i

(
ηvt,i − η2v2

t,i/2
)

= −η 〈w(t),vt〉+ η2
∑
i

w
(t)
i v2

t,i/2

≤ −η 〈w(t),vt〉+ η2/2.

21.2 Online Classification in the Unrealizable Case 297

Summing this inequality over t we get

log(ZT+1)− log(Z1) =

T∑
t=1

log
Zt+1

Zt
≤ −η

T∑
t=1

〈w(t),vt〉+
T η2

2
. (21.3)

Next, we lower bound ZT+1. For each i, we can rewrite w̃
(T+1)
i = e−η

∑
t vt,i and

we get that

logZT+1 = log

(∑
i

e−η
∑
t vt,i

)
≥ log

(
max
i
e−η

∑
t vt,i

)
= −ηmin

i

∑
t

vt,i.

Combining the preceding with Equation (21.3) and using the fact that log(Z1) =

log(d) we get that

−ηmin
i

∑
t

vt,i − log(d) ≤ − η
T∑
t=1

〈w(t),vt〉+
T η2

2
,

which can be rearranged as follows:

T∑
t=1

〈w(t),vt〉 −min
i

∑
t

vt,i ≤
log(d)

η
+
η T

2
.

Plugging the value of η into the equation concludes our proof.

Proof of Theorem 21.10

Equipped with the Weighted-Majority algorithm and Theorem 21.11, we are

ready to prove Theorem 21.10. We start with the simpler case, in which H is

a finite class, and let us write H = {h1, . . . , hd}. In this case, we can refer to

each hypothesis, hi, as an expert, whose advice is to predict hi(xt), and whose

cost is vt,i = |hi(xt) − yt|. The prediction of the algorithm will therefore be

pt =
∑
i w

(t)
i hi(xt) ∈ [0, 1], and the loss is

|pt − yt| =

∣∣∣∣∣
d∑
i=1

w
(t)
i hi(xt)− yt

∣∣∣∣∣ =

∣∣∣∣∣
d∑
i=1

w
(t)
i (hi(xt)− yt)

∣∣∣∣∣ .
Now, if yt = 1, then for all i, hi(xt) − yt ≤ 0. Therefore, the above equals to∑
i w

(t)
i |hi(xt)− yt|. If yt = 0 then for all i, hi(xt)− yt ≥ 0, and the above also

equals
∑
i w

(t)
i |hi(xt)− yt|. All in all, we have shown that

|pt − yt| =
d∑
i=1

w
(t)
i |hi(xt)− yt| = 〈w

(t),vt〉.

Furthermore, for each i,
∑
t vt,i is exactly the number of mistakes hypothesis hi

makes. Applying Theorem 21.11 we obtain

298 Online Learning

corollary 21.12 Let H be a finite hypothesis class. There exists an algorithm

for online classification, whose predictions come from [0, 1], that enjoys the regret

bound
T∑
t=1

|pt − yt| −min
h∈H

T∑
t=1

|h(xt)− yt| ≤
√

2 log(|H|)T .

Next, we consider the case of a general hypothesis class. Previously, we con-

structed an expert for each individual hypothesis. However, if H is infinite this

leads to a vacuous bound. The main idea is to construct a set of experts in a

more sophisticated way. The challenge is how to define a set of experts that, on

one hand, is not excessively large and, on the other hand, contains experts that

give accurate predictions.

We construct the set of experts so that for each hypothesis h ∈ H and every

sequence of instances, x1,x2, . . . ,xT , there exists at least one expert in the set

which behaves exactly as h on these instances. For each L ≤ Ldim(H) and each

sequence 1 ≤ i1 < i2 < · · · < iL ≤ T we define an expert. The expert simulates

the game between SOA (presented in the previous section) and the environment

on the sequence of instances x1,x2, . . . ,xT assuming that SOA makes a mistake

precisely in rounds i1, i2, . . . , iL. The expert is defined by the following algorithm.

Expert(i1, i2, . . . , iL)

input A hypothesis class H ; Indices i1 < i2 < · · · < iL
initialize: V1 = H
for t = 1, 2, . . . , T

receive xt

for r ∈ {0, 1} let V
(r)
t = {h ∈ Vt : h(xt) = r}

define ỹt = argmaxr Ldim
(
V

(r)
t

)
(in case of a tie set ỹt = 0)

if t ∈ {i1, i2, . . . , iL}
predict ŷt = 1− ỹt

else

predict ŷt = ỹt

update Vt+1 = V
(ŷt)
t

Note that each such expert can give us predictions at every round t while only

observing the instances x1, . . . ,xt. Our generic online learning algorithm is now

an application of the Weighted-Majority algorithm with these experts.

To analyze the algorithm we first note that the number of experts is

d =

Ldim(H)∑
L=0

(
T

L

)
. (21.4)

It can be shown that when T ≥ Ldim(H)+2, the right-hand side of the equation

is bounded by (eT/Ldim(H))
Ldim(H)

(the proof can be found in Lemma A.5).

21.2 Online Classification in the Unrealizable Case 299

Theorem 21.11 tells us that the expected number of mistakes of Weighted-Majority

is at most the number of mistakes of the best expert plus
√

2 log(d)T . We will

next show that the number of mistakes of the best expert is at most the number

of mistakes of the best hypothesis in H. The following key lemma shows that,

on any sequence of instances, for each hypothesis h ∈ H there exists an expert

with the same behavior.

lemma 21.13 Let H be any hypothesis class with Ldim(H) <∞. Let x1,x2, . . . ,xT
be any sequence of instances. For any h ∈ H, there exists L ≤ Ldim(H) and in-

dices 1 ≤ i1 < i2 < · · · < iL ≤ T such that when running Expert(i1, i2, . . . , iL)

on the sequence x1,x2, . . . ,xT , the expert predicts h(xt) on each online round

t = 1, 2, . . . , T .

Proof Fix h ∈ H and the sequence x1,x2, . . . ,xT . We must construct L and the

indices i1, i2, . . . , iL. Consider running SOA on the input (x1, h(x1)), (x2, h(x2)),

. . ., (xT , h(xT)). SOA makes at most Ldim(H) mistakes on such input. We define

L to be the number of mistakes made by SOA and we define {i1, i2, . . . , iL} to

be the set of rounds in which SOA made the mistakes.

Now, consider the Expert(i1, i2, . . . , iL) running on the sequence x1,x2, . . . ,xT .

By construction, the set Vt maintained by Expert(i1, i2, . . . , iL) equals the set Vt
maintained by SOA when running on the sequence (x1, h(x1)), . . . , (xT , h(xT)).

The predictions of SOA differ from the predictions of h if and only if the round is

in {i1, i2, . . . , iL}. Since Expert(i1, i2, . . . , iL) predicts exactly like SOA if t is not

in {i1, i2, . . . , iL} and the opposite of SOAs’ predictions if t is in {i1, i2, . . . , iL},
we conclude that the predictions of the expert are always the same as the pre-

dictions of h.

The previous lemma holds in particular for the hypothesis in H that makes the

least number of mistakes on the sequence of examples, and we therefore obtain

the following:

corollary 21.14 Let (x1, y1), (x2, y2), . . . , (xT , yT) be a sequence of examples

and let H be a hypothesis class with Ldim(H) < ∞. There exists L ≤ Ldim(H)

and indices 1 ≤ i1 < i2 < · · · < iL ≤ T , such that Expert(i1, i2, . . . , iL) makes

at most as many mistakes as the best h ∈ H does, namely,

min
h∈H

T∑
t=1

|h(xt)− yt|

mistakes on the sequence of examples.

Together with Theorem 21.11, the upper bound part of Theorem 21.10 is

proven.

300 Online Learning

21.3 Online Convex Optimization

In Chapter 12 we studied convex learning problems and showed learnability

results for these problems in the agnostic PAC learning framework. In this section

we show that similar learnability results hold for convex problems in the online

learning framework. In particular, we consider the following problem.

Online Convex Optimization

definitions:

hypothesis class H ; domain Z ; loss function ` : H× Z → R
assumptions:

H is convex

∀z ∈ Z, `(·, z) is a convex function

for t = 1, 2, . . . , T

learner predicts a vector w(t) ∈ H
environment responds with zt ∈ Z
learner suffers loss `(w(t), zt)

As in the online classification problem, we analyze the regret of the algorithm.

Recall that the regret of an online algorithm with respect to a competing hy-

pothesis, which here will be some vector w? ∈ H, is defined as

RegretA(w?, T) =

T∑
t=1

`(w(t), zt)−
T∑
t=1

`(w?, zt). (21.5)

As before, the regret of the algorithm relative to a set of competing vectors, H,

is defined as

RegretA(H, T) = sup
w?∈H

RegretA(w?, T).

In Chapter 14 we have shown that Stochastic Gradient Descent solves convex

learning problems in the agnostic PAC model. We now show that a very similar

algorithm, Online Gradient Descent, solves online convex learning problems.

Online Gradient Descent

parameter: η > 0

initialize: w(1) = 0

for t = 1, 2, . . . , T

predict w(t)

receive zt and let ft(·) = `(·, zt)
choose vt ∈ ∂ft(w(t))

update:

1. w(t+ 1
2) = w(t) − ηvt

2. w(t+1) = argminw∈H ‖w −w(t+ 1
2)‖

21.4 The Online Perceptron Algorithm 301

theorem 21.15 The Online Gradient Descent algorithm enjoys the following

regret bound for every w? ∈ H,

RegretA(w?, T) ≤ ‖w
?‖2

2η
+
η

2

T∑
t=1

‖vt‖2.

If we further assume that ft is ρ-Lipschitz for all t, then setting η = 1/
√
T yields

RegretA(w?, T) ≤ 1

2
(‖w?‖2 + ρ2)

√
T .

If we further assume that H is B-bounded and we set η = B
ρ
√
T

then

RegretA(H, T) ≤ B ρ
√
T .

Proof The analysis is similar to the analysis of Stochastic Gradient Descent

with projections. Using the projection lemma, the definition of w(t+ 1
2), and the

definition of subgradients, we have that for every t,

‖w(t+1) −w?‖2 − ‖w(t) −w?‖2

= ‖w(t+1) −w?‖2 − ‖w(t+ 1
2) −w?‖2 + ‖w(t+ 1

2) −w?‖2 − ‖w(t) −w?‖2

≤ ‖w(t+ 1
2) −w?‖2 − ‖w(t) −w?‖2

= ‖w(t) − ηvt −w?‖2 − ‖w(t) −w?‖2

= −2η〈w(t) −w?,vt〉+ η2‖vt‖2

≤ −2η(ft(w
(t))− ft(w?)) + η2‖vt‖2.

Summing over t and observing that the left-hand side is a telescopic sum we

obtain that

‖w(T+1) −w?‖2 − ‖w(1) −w?‖2 ≤ −2η

T∑
t=1

(ft(w
(t))− ft(w?)) + η2

T∑
t=1

‖vt‖2.

Rearranging the inequality and using the fact that w(1) = 0, we get that

T∑
t=1

(ft(w
(t))− ft(w?)) ≤ ‖w

(1) −w?‖2 − ‖w(T+1) −w?‖2

2η
+
η

2

T∑
t=1

‖vt‖2

≤ ‖w
?‖2

2η
+
η

2

T∑
t=1

‖vt‖2.

This proves the first bound in the theorem. The second bound follows from the

assumption that ft is ρ-Lipschitz, which implies that ‖vt‖ ≤ ρ.

21.4 The Online Perceptron Algorithm

The Perceptron is a classic online learning algorithm for binary classification with

the hypothesis class of homogenous halfspaces, namely, H = {x 7→ sign(〈w,x〉) :

302 Online Learning

w ∈ Rd}. In Section 9.1.2 we have presented the batch version of the Perceptron,

which aims to solve the ERM problem with respect to H. We now present an

online version of the Perceptron algorithm.

Let X = Rd, Y = {−1, 1}. On round t, the learner receives a vector xt ∈ Rd.
The learner maintains a weight vector w(t) ∈ Rd and predicts pt = sign(〈w(t),xt〉).
Then, it receives yt ∈ Y and pays 1 if pt 6= yt and 0 otherwise.

The goal of the learner is to make as few prediction mistakes as possible. In

Section 21.1 we characterized the optimal algorithm and showed that the best

achievable mistake bound depends on the Littlestone dimension of the class.

We show later that if d ≥ 2 then Ldim(H) = ∞, which implies that we have

no hope of making few prediction mistakes. Indeed, consider the tree for which

v1 = (1
2 , 1, 0, . . . , 0), v2 = (1

4 , 1, 0, . . . , 0), v3 = (3
4 , 1, 0, . . . , 0), etc. Because of

the density of the reals, this tree is shattered by the subset of H which contains

all hypotheses that are parametrized by w of the form w = (−1, a, 0, . . . , 0), for

a ∈ [0, 1]. We conclude that indeed Ldim(H) =∞.

To sidestep this impossibility result, the Perceptron algorithm relies on the

technique of surrogate convex losses (see Section 12.3). This is also closely related

to the notion of margin we studied in Chapter 15.

A weight vector w makes a mistake on an example (x, y) whenever the sign of

〈w,x〉 does not equal y. Therefore, we can write the 0−1 loss function as follows

`(w, (x, y)) = 1[y〈w,x〉≤0].

On rounds on which the algorithm makes a prediction mistake, we shall use the

hinge-loss as a surrogate convex loss function

ft(w) = max{0, 1− yt〈w,xt〉}.

The hinge-loss satisfies the two conditions:

• ft is a convex function

• For all w, ft(w) ≥ `(w, (xt, yt)). In particular, this holds for w(t).

On rounds on which the algorithm is correct, we shall define ft(w) = 0. Clearly,

ft is convex in this case as well. Furthermore, ft(w
(t)) = `(w(t), (xt, yt)) = 0.

Remark 21.5 In Section 12.3 we used the same surrogate loss function for all the

examples. In the online model, we allow the surrogate to depend on the specific

round. It can even depend on w(t). Our ability to use a round specific surrogate

stems from the worst-case type of analysis we employ in online learning.

Let us now run the Online Gradient Descent algorithm on the sequence of

functions, f1, . . . , fT , with the hypothesis class being all vectors in Rd (hence,

the projection step is vacuous). Recall that the algorithm initializes w(1) = 0

and its update rule is

w(t+1) = w(t) − ηvt

for some vt ∈ ∂ft(w
(t)). In our case, if yt〈w(t),xt〉 > 0 then ft is the zero

21.4 The Online Perceptron Algorithm 303

function and we can take vt = 0. Otherwise, it is easy to verify that vt = −ytxt
is in ∂ft(w

(t)). We therefore obtain the update rule

w(t+1) =

{
w(t) if yt〈w(t),xt〉 > 0

w(t) + ηytxt otherwise

Denote by M the set of rounds in which sign(〈w(t),xt〉) 6= yt. Note that on

round t, the prediction of the Perceptron can be rewritten as

pt = sign(〈w(t),xt〉) = sign

(
η

∑
i∈M:i<t

yi 〈xi,xt〉

)
.

This form implies that the predictions of the Perceptron algorithm and the set

M do not depend on the actual value of η as long as η > 0. We have therefore

obtained the Perceptron algorithm:

Perceptron

initialize: w1 = 0

for t = 1, 2, . . . , T

receive xt
predict pt = sign(〈w(t),xt〉)
if yt〈w(t),xt〉 ≤ 0

w(t+1) = w(t) + ytxt
else

w(t+1) = w(t)

To analyze the Perceptron, we rely on the analysis of Online Gradient De-

scent given in the previous section. In our case, the subgradient of ft we use

in the Perceptron is vt = −1[yt〈w(t),xt〉≤0] yt xt. Indeed, the Perceptron’s update

is w(t+1) = w(t) − vt, and as discussed before this is equivalent to w(t+1) =

w(t) − ηvt for every η > 0. Therefore, Theorem 21.15 tells us that

T∑
t=1

ft(w
(t))−

T∑
t=1

ft(w
?) ≤ 1

2η
‖w?‖22 +

η

2

T∑
t=1

‖vt‖22.

Since ft(w
(t)) is a surrogate for the 0−1 loss we know that

∑T
t=1 ft(w

(t)) ≥ |M|.
Denote R = maxt ‖xt‖; then we obtain

|M| −
T∑
t=1

ft(w
?) ≤ 1

2η
‖w?‖22 +

η

2
|M|R2

Setting η = ‖w?‖
R
√
|M|

and rearranging, we obtain

|M| −R‖w?‖
√
|M| −

T∑
t=1

ft(w
?) ≤ 0. (21.6)

This inequality implies

304 Online Learning

theorem 21.16 Suppose that the Perceptron algorithm runs on a sequence

(x1, y1), . . . , (xT , yT) and let R = maxt ‖xt‖. Let M be the rounds on which the

Perceptron errs and let ft(w) = 1[t∈M] [1− yt〈w,xt〉]+. Then, for every w?

|M| ≤
∑
t

ft(w
?) +R ‖w?‖

√∑
t

ft(w?) +R2 ‖w?‖2 .

In particular, if there exists w? such that yt〈w?,xt〉 ≥ 1 for all t then

|M| ≤ R2 ‖w?‖2.

Proof The theorem follows from Equation (21.6) and the following claim: Given

x, b, c ∈ R+, the inequality x− b
√
x− c ≤ 0 implies that x ≤ c+ b2 + b

√
c. The

last claim can be easily derived by analyzing the roots of the convex parabola

Q(y) = y2 − by − c.

The last assumption of Theorem 21.16 is called separability with large margin

(see Chapter 15). That is, there exists w? that not only satisfies that the point

xt lies on the correct side of the halfspace, it also guarantees that xt is not too

close to the decision boundary. More specifically, the distance from xt to the

decision boundary is at least γ = 1/‖w?‖ and the bound becomes (R/γ)2.

When the separability assumption does not hold, the bound involves the term

[1− yt〈w?,xt〉]+ which measures how much the separability with margin require-

ment is violated.

As a last remark we note that there can be cases in which there exists some

w? that makes zero errors on the sequence but the Perceptron will make many

errors. Indeed, this is a direct consequence of the fact that Ldim(H) = ∞. The

way we sidestep this impossibility result is by assuming more on the sequence of

examples – the bound in Theorem 21.16 will be meaningful only if the cumulative

surrogate loss,
∑
t ft(w

?) is not excessively large.

21.5 Summary

In this chapter we have studied the online learning model. Many of the results

we derived for the PAC learning model have an analog in the online model. First,

we have shown that a combinatorial dimension, the Littlestone dimension, char-

acterizes online learnability. To show this, we introduced the SOA algorithm (for

the realizable case) and the Weighted-Majority algorithm (for the unrealizable

case). We have also studied online convex optimization and have shown that

online gradient descent is a successful online learner whenever the loss function

is convex and Lipschitz. Finally, we presented the online Perceptron algorithm

as a combination of online gradient descent and the concept of surrogate convex

loss functions.

21.6 Bibliographic Remarks 305

21.6 Bibliographic Remarks

The Standard Optimal Algorithm was derived by the seminal work of Lit-

tlestone (1988). A generalization to the nonrealizable case, as well as other

variants like margin-based Littlestone’s dimension, were derived in (Ben-David

et al. 2009). Characterizations of online learnability beyond classification have

been obtained in (Abernethy, Bartlett, Rakhlin & Tewari 2008, Rakhlin, Srid-

haran & Tewari 2010, Daniely et al. 2011). The Weighted-Majority algorithm is

due to (Littlestone & Warmuth 1994) and (Vovk 1990).

The term “online convex programming” was introduced by Zinkevich (2003)

but this setting was introduced some years earlier by Gordon (1999). The Per-

ceptron dates back to Rosenblatt (Rosenblatt 1958). An analysis for the re-

alizable case (with margin assumptions) appears in (Agmon 1954, Minsky &

Papert 1969). Freund and Schapire (Freund & Schapire 1999) presented an anal-

ysis for the unrealizable case with a squared-hinge-loss based on a reduction to

the realizable case. A direct analysis for the unrealizable case with the hinge-loss

was given by Gentile (Gentile 2003).

For additional information we refer the reader to Cesa-Bianchi & Lugosi (2006)

and Shalev-Shwartz (2011).

21.7 Exercises

1. Find a hypothesis class H and a sequence of examples on which Consistent

makes |H| − 1 mistakes.

2. Find a hypothesis class H and a sequence of examples on which the mistake

bound of the Halving algorithm is tight.

3. Let d ≥ 2, X = {1, . . . , d} and let H = {hj : j ∈ [d]}, where hj(x) = 1[x=j].

Calculate MHalving(H) (i.e., derive lower and upper bounds on MHalving(H),

and prove that they are equal).

4. The Doubling Trick:

In Theorem 21.15, the parameter η depends on the time horizon T . In this

exercise we show how to get rid of this dependence by a simple trick.

Consider an algorithm that enjoys a regret bound of the form α
√
T , but

its parameters require the knowledge of T . The doubling trick, described in

the following, enables us to convert such an algorithm into an algorithm that

does not need to know the time horizon. The idea is to divide the time into

periods of increasing size and run the original algorithm on each period.

The Doubling Trick

input: algorithm A whose parameters depend on the time horizon

for m = 0, 1, 2, . . .

run A on the 2m rounds t = 2m, . . . , 2m+1 − 1

306 Online Learning

Show that if the regret of A on each period of 2m rounds is at most α
√

2m,

then the total regret is at most
√

2√
2− 1

α
√
T .

5. Online-to-batch Conversions: In this exercise we demonstrate how a suc-

cessful online learning algorithm can be used to derive a successful PAC

learner as well.

Consider a PAC learning problem for binary classification parameterized

by an instance domain, X , and a hypothesis class,H. Suppose that there exists

an online learning algorithm, A, which enjoys a mistake bound MA(H) <∞.

Consider running this algorithm on a sequence of T examples which are sam-

pled i.i.d. from a distribution D over the instance space X , and are labeled by

some h? ∈ H. Suppose that for every round t, the prediction of the algorithm

is based on a hypothesis ht : X → {0, 1}. Show that

E[LD(hr)] ≤
MA(H)

T
,

where the expectation is over the random choice of the instances as well as a

random choice of r according to the uniform distribution over [T].

Hint: Use similar arguments to the ones appearing in the proof of Theo-

rem 14.8.

22 Clustering

Clustering is one of the most widely used techniques for exploratory data anal-

ysis. Across all disciplines, from social sciences to biology to computer science,

people try to get a first intuition about their data by identifying meaningful

groups among the data points. For example, computational biologists cluster

genes on the basis of similarities in their expression in different experiments; re-

tailers cluster customers, on the basis of their customer profiles, for the purpose

of targeted marketing; and astronomers cluster stars on the basis of their spacial

proximity.

The first point that one should clarify is, naturally, what is clustering? In-

tuitively, clustering is the task of grouping a set of objects such that similar

objects end up in the same group and dissimilar objects are separated into dif-

ferent groups. Clearly, this description is quite imprecise and possibly ambiguous.

Quite surprisingly, it is not at all clear how to come up with a more rigorous

definition.

There are several sources for this difficulty. One basic problem is that the

two objectives mentioned in the earlier statement may in many cases contradict

each other. Mathematically speaking, similarity (or proximity) is not a transi-

tive relation, while cluster sharing is an equivalence relation and, in particular,

it is a transitive relation. More concretely, it may be the case that there is a

long sequence of objects, x1, . . . , xm such that each xi is very similar to its two

neighbors, xi−1 and xi+1, but x1 and xm are very dissimilar. If we wish to make

sure that whenever two elements are similar they share the same cluster, then

we must put all of the elements of the sequence in the same cluster. However,

in that case, we end up with dissimilar elements (x1 and xm) sharing a cluster,

thus violating the second requirement.

To illustrate this point further, suppose that we would like to cluster the points

in the following picture into two clusters.

A clustering algorithm that emphasizes not separating close-by points (e.g., the

Single Linkage algorithm that will be described in Section 22.1) will cluster this

input by separating it horizontally according to the two lines:

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

308 Clustering

In contrast, a clustering method that emphasizes not having far-away points

share the same cluster (e.g., the 2-means algorithm that will be described in

Section 22.1) will cluster the same input by dividing it vertically into the right-

hand half and the left-hand half:

Another basic problem is the lack of “ground truth” for clustering, which is a

common problem in unsupervised learning. So far in the book, we have mainly

dealt with supervised learning (e.g., the problem of learning a classifier from

labeled training data). The goal of supervised learning is clear – we wish to

learn a classifier which will predict the labels of future examples as accurately

as possible. Furthermore, a supervised learner can estimate the success, or the

risk, of its hypotheses using the labeled training data by computing the empirical

loss. In contrast, clustering is an unsupervised learning problem; namely, there

are no labels that we try to predict. Instead, we wish to organize the data in

some meaningful way. As a result, there is no clear success evaluation procedure

for clustering. In fact, even on the basis of full knowledge of the underlying data

distribution, it is not clear what is the “correct” clustering for that data or how

to evaluate a proposed clustering.

Consider, for example, the following set of points in R2:

and suppose we are required to cluster them into two clusters. We have two

highly justifiable solutions:

Clustering 309

This phenomenon is not just artificial but occurs in real applications. A given

set of objects can be clustered in various different meaningful ways. This may

be due to having different implicit notions of distance (or similarity) between

objects, for example, clustering recordings of speech by the accent of the speaker

versus clustering them by content, clustering movie reviews by movie topic versus

clustering them by the review sentiment, clustering paintings by topic versus

clustering them by style, and so on.

To summarize, there may be several very different conceivable clustering so-

lutions for a given data set. As a result, there is a wide variety of clustering

algorithms that, on some input data, will output very different clusterings.

A Clustering Model:
Clustering tasks can vary in terms of both the type of input they have and the

type of outcome they are expected to compute. For concreteness, we shall focus

on the following common setup:

Input — a set of elements, X , and a distance function over it. That is, a function

d : X × X → R+ that is symmetric, satisfies d(x, x) = 0 for all x ∈ X
and often also satisfies the triangle inequality. Alternatively, the function

could be a similarity function s : X × X → [0, 1] that is symmetric

and satisfies s(x, x) = 1 for all x ∈ X . Additionally, some clustering

algorithms also require an input parameter k (determining the number

of required clusters).

Output — a partition of the domain set X into subsets. That is, C = (C1, . . . Ck)

where
⋃k
i=1 Ci = X and for all i 6= j, Ci∩Cj = ∅. In some situations the

clustering is “soft,” namely, the partition of X into the different clusters

is probabilistic where the output is a function assigning to each domain

point, x ∈ X , a vector (p1(x), . . . , pk(x)), where pi(x) = P[x ∈ Ci] is

the probability that x belongs to cluster Ci. Another possible output is

a clustering dendrogram (from Greek dendron = tree, gramma = draw-

ing), which is a hierarchical tree of domain subsets, having the singleton

sets in its leaves, and the full domain as its root. We shall discuss this

formulation in more detail in the following.

310 Clustering

In the following we survey some of the most popular clustering methods. In

the last section of this chapter we return to the high level discussion of what is

clustering.

22.1 Linkage-Based Clustering Algorithms

Linkage-based clustering is probably the simplest and most straightforward paradigm

of clustering. These algorithms proceed in a sequence of rounds. They start from

the trivial clustering that has each data point as a single-point cluster. Then,

repeatedly, these algorithms merge the “closest” clusters of the previous cluster-

ing. Consequently, the number of clusters decreases with each such round. If kept

going, such algorithms would eventually result in the trivial clustering in which

all of the domain points share one large cluster. Two parameters, then, need to

be determined to define such an algorithm clearly. First, we have to decide how

to measure (or define) the distance between clusters, and, second, we have to

determine when to stop merging. Recall that the input to a clustering algorithm

is a between-points distance function, d. There are many ways of extending d to

a measure of distance between domain subsets (or clusters). The most common

ways are

1. Single Linkage clustering, in which the between-clusters distance is defined

by the minimum distance between members of the two clusters, namely,

D(A,B)
def
= min{d(x, y) : x ∈ A, y ∈ B}

2. Average Linkage clustering, in which the distance between two clusters is

defined to be the average distance between a point in one of the clusters and

a point in the other, namely,

D(A,B)
def
=

1

|A||B|
∑

x∈A, y∈B
d(x, y)

3. Max Linkage clustering, in which the distance between two clusters is defined

as the maximum distance between their elements, namely,

D(A,B)
def
= max{d(x, y) : x ∈ A, y ∈ B}.

The linkage-based clustering algorithms are agglomerative in the sense that they

start from data that is completely fragmented and keep building larger and

larger clusters as they proceed. Without employing a stopping rule, the outcome

of such an algorithm can be described by a clustering dendrogram: that is, a tree

of domain subsets, having the singleton sets in its leaves, and the full domain as

its root. For example, if the input is the elements X = {a, b, c, d, e} ⊂ R2 with

the Euclidean distance as depicted on the left, then the resulting dendrogram is

the one depicted on the right:

22.2 k-Means and Other Cost Minimization Clusterings 311

b
c

d

e

a

{a} {b} {c} {d} {e}

{b, c} {d, e}

{b, c, d, e}

{a, b, c, d, e}

The single linkage algorithm is closely related to Kruskal’s algorithm for finding

a minimal spanning tree on a weighted graph. Indeed, consider the full graph

whose vertices are elements of X and the weight of an edge (x, y) is the distance

d(x, y). Each merge of two clusters performed by the single linkage algorithm

corresponds to a choice of an edge in the aforementioned graph. It is also possible

to show that the set of edges the single linkage algorithm chooses along its run

forms a minimal spanning tree.

If one wishes to turn a dendrogram into a partition of the space (a clustering),

one needs to employ a stopping criterion. Common stopping criteria include

• Fixed number of clusters – fix some parameter, k, and stop merging clusters

as soon as the number of clusters is k.

• Distance upper bound – fix some r ∈ R+. Stop merging as soon as all the

between-clusters distances are larger than r. We can also set r to be

αmax{d(x, y) : x, y ∈ X} for some α < 1. In that case the stopping

criterion is called “scaled distance upper bound.”

22.2 k-Means and Other Cost Minimization Clusterings

Another popular approach to clustering starts by defining a cost function over a

parameterized set of possible clusterings and the goal of the clustering algorithm

is to find a partitioning (clustering) of minimal cost. Under this paradigm, the

clustering task is turned into an optimization problem. The objective function

is a function from pairs of an input, (X , d), and a proposed clustering solution

C = (C1, . . . , Ck), to positive real numbers. Given such an objective function,

which we denote by G, the goal of a clustering algorithm is defined as finding, for

a given input (X , d), a clustering C so that G((X , d), C) is minimized. In order

to reach that goal, one has to apply some appropriate search algorithm.

As it turns out, most of the resulting optimization problems are NP-hard, and

some are even NP-hard to approximate. Consequently, when people talk about,

say, k-means clustering, they often refer to some particular common approxima-

tion algorithm rather than the cost function or the corresponding exact solution

of the minimization problem.

Many common objective functions require the number of clusters, k, as a

312 Clustering

parameter. In practice, it is often up to the user of the clustering algorithm to

choose the parameter k that is most suitable for the given clustering problem.

In the following we describe some of the most common objective functions.

• The k-means objective function is one of the most popular clustering

objectives. In k-means the data is partitioned into disjoint sets C1, . . . , Ck
where each Ci is represented by a centroid µi. It is assumed that the input

set X is embedded in some larger metric space (X ′, d) (so that X ⊆ X ′)
and centroids are members of X ′. The k-means objective function measures

the squared distance between each point in X to the centroid of its cluster.

The centroid of Ci is defined to be

µi(Ci) = argmin
µ∈X ′

∑
x∈Ci

d(x, µ)2.

Then, the k-means objective is

Gk−means((X , d), (C1, . . . , Ck)) =

k∑
i=1

∑
x∈Ci

d(x, µi(Ci))
2.

This can also be rewritten as

Gk−means((X , d), (C1, . . . , Ck)) = min
µ1,...µk∈X ′

k∑
i=1

∑
x∈Ci

d(x, µi)
2. (22.1)

The k-means objective function is relevant, for example, in digital com-

munication tasks, where the members of X may be viewed as a collection

of signals that have to be transmitted. While X may be a very large set

of real valued vectors, digital transmission allows transmitting of only a

finite number of bits for each signal. One way to achieve good transmis-

sion under such constraints is to represent each member of X by a “close”

member of some finite set µ1, . . . µk, and replace the transmission of any

x ∈ X by transmitting the index of the closest µi. The k-means objective

can be viewed as a measure of the distortion created by such a transmission

representation scheme.

• The k-medoids objective function is similar to the k-means objective,

except that it requires the cluster centroids to be members of the input

set. The objective function is defined by

GK−medoid((X , d), (C1, . . . , Ck)) = min
µ1,...µk∈X

k∑
i=1

∑
x∈Ci

d(x, µi)
2.

• The k-median objective function is quite similar to the k-medoids objec-

tive, except that the “distortion” between a data point and the centroid

of its cluster is measured by distance, rather than by the square of the

distance:

GK−median((X , d), (C1, . . . , Ck)) = min
µ1,...µk∈X

k∑
i=1

∑
x∈Ci

d(x, µi).

22.2 k-Means and Other Cost Minimization Clusterings 313

An example where such an objective makes sense is the facility location

problem. Consider the task of locating k fire stations in a city. One can

model houses as data points and aim to place the stations so as to minimize

the average distance between a house and its closest fire station.

The previous examples can all be viewed as center-based objectives. The so-

lution to such a clustering problem is determined by a set of cluster centers,

and the clustering assigns each instance to the center closest to it. More gener-

ally, center-based objective is determined by choosing some monotonic function

f : R+ → R+ and then defining

Gf ((X , d), (C1, . . . Ck)) = min
µ1,...µk∈X ′

k∑
i=1

∑
x∈Ci

f(d(x, µi)),

where X ′ is either X or some superset of X .

Some objective functions are not center based. For example, the sum of in-

cluster distances (SOD)

GSOD((X , d), (C1, . . . Ck)) =

k∑
i=1

∑
x,y∈Ci

d(x, y)

and the MinCut objective that we shall discuss in Section 22.3 are not center-

based objectives.

22.2.1 The k-Means Algorithm

The k-means objective function is quite popular in practical applications of clus-

tering. However, it turns out that finding the optimal k-means solution is of-

ten computationally infeasible (the problem is NP-hard, and even NP-hard to

approximate to within some constant). As an alternative, the following simple

iterative algorithm is often used, so often that, in many cases, the term k-means

Clustering refers to the outcome of this algorithm rather than to the cluster-

ing that minimizes the k-means objective cost. We describe the algorithm with

respect to the Euclidean distance function d(x,y) = ‖x− y‖.

k-Means

input: X ⊂ Rn ; Number of clusters k

initialize: Randomly choose initial centroids µ1, . . . ,µk
repeat until convergence

∀i ∈ [k] set Ci = {x ∈ X : i = argminj ‖x− µj‖}
(break ties in some arbitrary manner)

∀i ∈ [k] update µi = 1
|Ci|

∑
x∈Ci x

lemma 22.1 Each iteration of the k-means algorithm does not increase the

k-means objective function (as given in Equation (22.1)).

314 Clustering

Proof To simplify the notation, let us use the shorthand G(C1, . . . , Ck) for the

k-means objective, namely,

G(C1, . . . , Ck) = min
µ1,...,µk∈Rn

k∑
i=1

∑
x∈Ci

‖x− µi‖2. (22.2)

It is convenient to define µ(Ci) = 1
|Ci|

∑
x∈Ci x and note that µ(Ci) = argminµ∈Rn

∑
x∈Ci ‖x−

µ‖2. Therefore, we can rewrite the k-means objective as

G(C1, . . . , Ck) =

k∑
i=1

∑
x∈Ci

‖x− µ(Ci)‖2. (22.3)

Consider the update at iteration t of the k-means algorithm. Let C
(t−1)
1 , . . . , C

(t−1)
k

be the previous partition, let µ
(t−1)
i = µ(C

(t−1)
i), and let C

(t)
1 , . . . , C

(t)
k be the

new partition assigned at iteration t. Using the definition of the objective as

given in Equation (22.2) we clearly have that

G(C
(t)
1 , . . . , C

(t)
k) ≤

k∑
i=1

∑
x∈C(t)

i

‖x− µ(t−1)
i ‖2. (22.4)

In addition, the definition of the new partition (C
(t)
1 , . . . , C

(t)
k) implies that it

minimizes the expression
∑k
i=1

∑
x∈Ci ‖x− µ

(t−1)
i ‖2 over all possible partitions

(C1, . . . , Ck). Hence,

k∑
i=1

∑
x∈C(t)

i

‖x− µ(t−1)
i ‖2 ≤

k∑
i=1

∑
x∈C(t−1)

i

‖x− µ(t−1)
i ‖2. (22.5)

Using Equation (22.3) we have that the right-hand side of Equation (22.5) equals

G(C
(t−1)
1 , . . . , C

(t−1)
k). Combining this with Equation (22.4) and Equation (22.5),

we obtain that G(C
(t)
1 , . . . , C

(t)
k) ≤ G(C

(t−1)
1 , . . . , C

(t−1)
k), which concludes our

proof.

While the preceding lemma tells us that the k-means objective is monotonically

nonincreasing, there is no guarantee on the number of iterations the k-means al-

gorithm needs in order to reach convergence. Furthermore, there is no nontrivial

lower bound on the gap between the value of the k-means objective of the al-

gorithm’s output and the minimum possible value of that objective function. In

fact, k-means might converge to a point which is not even a local minimum (see

Exercise 2). To improve the results of k-means it is often recommended to repeat

the procedure several times with different randomly chosen initial centroids (e.g.,

we can choose the initial centroids to be random points from the data).

22.3 Spectral Clustering 315

22.3 Spectral Clustering

Often, a convenient way to represent the relationships between points in a data

set X = {x1, . . . , xm} is by a similarity graph; each vertex represents a data

point xi, and every two vertices are connected by an edge whose weight is their

similarity, Wi,j = s(xi, xj), where W ∈ Rm,m. For example, we can set Wi,j =

exp(−d(xi, xj)
2/σ2), where d(·, ·) is a distance function and σ is a parameter.

The clustering problem can now be formulated as follows: We want to find a

partition of the graph such that the edges between different groups have low

weights and the edges within a group have high weights.

In the clustering objectives described previously, the focus was on one side

of our intuitive definition of clustering – making sure that points in the same

cluster are similar. We now present objectives that focus on the other requirement

– points separated into different clusters should be nonsimilar.

22.3.1 Graph Cut

Given a graph represented by a similarity matrix W , the simplest and most

direct way to construct a partition of the graph is to solve the mincut problem,

which chooses a partition C1, . . . , Ck that minimizes the objective

cut(C1, . . . , Ck) =

k∑
i=1

∑
r∈Ci,s/∈Ci

Wr,s.

For k = 2, the mincut problem can be solved efficiently. However, in practice it

often does not lead to satisfactory partitions. The problem is that in many cases,

the solution of mincut simply separates one individual vertex from the rest of the

graph. Of course, this is not what we want to achieve in clustering, as clusters

should be reasonably large groups of points.

Several solutions to this problem have been suggested. The simplest solution

is to normalize the cut and define the normalized mincut objective as follows:

RatioCut(C1, . . . , Ck) =

k∑
i=1

1

|Ci|
∑

r∈Ci,s/∈Ci

Wr,s.

The preceding objective assumes smaller values if the clusters are not too small.

Unfortunately, introducing this balancing makes the problem computationally

hard to solve. Spectral clustering is a way to relax the problem of minimizing

RatioCut.

22.3.2 Graph Laplacian and Relaxed Graph Cuts

The main mathematical object for spectral clustering is the graph Laplacian

matrix. There are several different definitions of graph Laplacian in the literature,

and in the following we describe one particular definition.

316 Clustering

definition 22.2 (Unnormalized Graph Laplacian) The unnormalized graph

Laplacian is the m×m matrix L = D −W where D is a diagonal matrix with

Di,i =
∑m
j=1Wi,j . The matrix D is called the degree matrix.

The following lemma underscores the relation between RatioCut and the Lapla-

cian matrix.

lemma 22.3 Let C1, . . . , Ck be a clustering and let H ∈ Rm,k be the matrix

such that

Hi,j = 1√
|Cj |

1[i∈Cj].

Then, the columns of H are orthonormal to each other and

RatioCut(C1, . . . , Ck) = trace(H> LH).

Proof Let h1, . . . ,hk be the columns of H. The fact that these vectors are

orthonormal is immediate from the definition. Next, by standard algebraic ma-

nipulations, it can be shown that trace(H> LH) =
∑k
i=1 h>i Lhi and that for

any vector v we have

v>Lv =
1

2

(∑
r

Dr,rv
2
r − 2

∑
r,s

vrvsWr,s +
∑
s

Ds,sv
2
s

)
=

1

2

∑
r,s

Wr,s(vr − vs)2.

Applying this with v = hi and noting that (hi,r − hi,s)
2 is nonzero only if

r ∈ Ci, s /∈ Ci or the other way around, we obtain that

h>i Lhi =
1

|Ci|
∑

r∈Ci,s/∈Ci

Wr,s.

Therefore, to minimize RatioCut we can search for a matrix H whose columns

are orthonormal and such that each Hi,j is either 0 or 1/
√
|Cj |. Unfortunately,

this is an integer programming problem which we cannot solve efficiently. Instead,

we relax the latter requirement and simply search an orthonormal matrix H ∈
Rm,k that minimizes trace(H> LH). As we will see in the next chapter about

PCA (particularly, the proof of Theorem 23.2), the solution to this problem is

to set U to be the matrix whose columns are the eigenvectors corresponding to

the k minimal eigenvalues of L. The resulting algorithm is called Unnormalized

Spectral Clustering.

22.4 Information Bottleneck* 317

22.3.3 Unnormalized Spectral Clustering

Unnormalized Spectral Clustering

Input: W ∈ Rm,m ; Number of clusters k

Initialize: Compute the unnormalized graph Laplacian L

Let U ∈ Rm,k be the matrix whose columns are the eigenvectors of L

corresponding to the k smallest eigenvalues

Let v1, . . . ,vm be the rows of U

Cluster the points v1, . . . ,vm using k-means

Output: Clusters C1, . . . , CK of the k-means algorithm

The spectral clustering algorithm starts with finding the matrix H of the k

eigenvectors corresponding to the smallest eigenvalues of the graph Laplacian

matrix. It then represents points according to the rows of H. It is due to the

properties of the graph Laplacians that this change of representation is useful.

In many situations, this change of representation enables the simple k-means

algorithm to detect the clusters seamlessly. Intuitively, if H is as defined in

Lemma 22.3 then each point in the new representation is an indicator vector

whose value is nonzero only on the element corresponding to the cluster it belongs

to.

22.4 Information Bottleneck*

The information bottleneck method is a clustering technique introduced by

Tishby, Pereira, and Bialek. It relies on notions from information theory. To

illustrate the method, consider the problem of clustering text documents where

each document is represented as a bag-of-words; namely, each document is a

vector x = {0, 1}n, where n is the size of the dictionary and xi = 1 iff the word

corresponding to index i appears in the document. Given a set of m documents,

we can interpret the bag-of-words representation of the m documents as a joint

probability over a random variable x, indicating the identity of a document (thus

taking values in [m]), and a random variable y, indicating the identity of a word

in the dictionary (thus taking values in [n]).

With this interpretation, the information bottleneck refers to the identity of

a clustering as another random variable, denoted C, that takes values in [k]

(where k will be set by the method as well). Once we have formulated x, y, C

as random variables, we can use tools from information theory to express a

clustering objective. In particular, the information bottleneck objective is

min
p(C|x)

I(x;C)− βI(C; y) ,

where I(·; ·) is the mutual information between two random variables,1 β is a

1 That is, given a probability function, p over the pairs (x,C),

318 Clustering

parameter, and the minimization is over all possible probabilistic assignments of

points to clusters. Intuitively, we would like to achieve two contradictory goals.

On one hand, we would like the mutual information between the identity of

the document and the identity of the cluster to be as small as possible. This

reflects the fact that we would like a strong compression of the original data. On

the other hand, we would like high mutual information between the clustering

variable and the identity of the words, which reflects the goal that the “relevant”

information about the document (as reflected by the words that appear in the

document) is retained. This generalizes the classical notion of minimal sufficient

statistics2 used in parametric statistics to arbitrary distributions.

Solving the optimization problem associated with the information bottleneck

principle is hard in the general case. Some of the proposed methods are similar

to the EM principle, which we will discuss in Chapter 24.

22.5 A High Level View of Clustering

So far, we have mainly listed various useful clustering tools. However, some fun-

damental questions remain unaddressed. First and foremost, what is clustering?

What is it that distinguishes a clustering algorithm from any arbitrary function

that takes an input space and outputs a partition of that space? Are there any

basic properties of clustering that are independent of any specific algorithm or

task?

One method for addressing such questions is via an axiomatic approach. There

have been several attempts to provide an axiomatic definition of clustering. Let

us demonstrate this approach by presenting the attempt made by Kleinberg

(2003).

Consider a clustering function, F , that takes as input any finite domain X
with a dissimilarity function d over its pairs and returns a partition of X .

Consider the following three properties of such a function:

Scale Invariance (SI) For any domain set X , dissimilarity function d, and

any α > 0, the following should hold: F (X , d) = F (X , αd) (where

(αd)(x, y)
def
= αd(x, y)).

Richness (Ri) For any finite X and every partition C = (C1, . . . Ck) of X (into

nonempty subsets) there exists some dissimilarity function d over X such

that F (X , d) = C.

I(x;C) =
∑
a

∑
b p(a, b) log

(
p(a,b)
p(a)p(b)

)
, where the sum is over all values x can take and all

values C can take.
2 A sufficient statistic is a function of the data which has the property of sufficiency with

respect to a statistical model and its associated unknown parameter, meaning that “no
other statistic which can be calculated from the same sample provides any additional
information as to the value of the parameter.” For example, if we assume that a variable is

distributed normally with a unit variance and an unknown expectation, then the average

function is a sufficient statistic.

22.5 A High Level View of Clustering 319

Consistency (Co) If d and d′ are dissimilarity functions over X , such that

for every x, y ∈ X , if x, y belong to the same cluster in F (X , d) then

d′(x, y) ≤ d(x, y) and if x, y belong to different clusters in F (X , d) then

d′(x, y) ≥ d(x, y), then F (X , d) = F (X , d′).

A moment of reflection reveals that the Scale Invariance is a very natural

requirement – it would be odd to have the result of a clustering function depend

on the units used to measure between-point distances. The Richness requirement

basically states that the outcome of the clustering function is fully controlled by

the function d, which is also a very intuitive feature. The third requirement,

Consistency, is the only requirement that refers to the basic (informal) definition

of clustering – we wish that similar points will be clustered together and that

dissimilar points will be separated to different clusters, and therefore, if points

that already share a cluster become more similar, and points that are already

separated become even less similar to each other, the clustering function should

have even stronger “support” of its previous clustering decisions.

However, Kleinberg (2003) has shown the following “impossibility” result:

theorem 22.4 There exists no function, F , that satisfies all the three proper-

ties: Scale Invariance, Richness, and Consistency.

Proof Assume, by way of contradiction, that some F does satisfy all three

properties. Pick some domain set X with at least three points. By Richness,

there must be some d1 such that F (X , d1) = {{x} : x ∈ X} and there also exists

some d2 such that F (X , d2) 6= F (X , d1).

Let α ∈ R+ be such that for every x, y ∈ X , αd2(x, y) ≥ d1(x, y). Let d3 =

αd2. Consider F (X , d3). By the Scale Invariance property of F , we should have

F (X , d3) = F (X , d2). On the other hand, since all distinct x, y ∈ X reside in

different clusters w.r.t. F (X , d1), and d3(x, y) ≥ d1(x, y), the Consistency of F

implies that F (X , d3) = F (X , d1). This is a contradiction, since we chose d1, d2

so that F (X , d2) 6= F (X , d1).

It is important to note that there is no single “bad property” among the three

properties. For every pair of the the three axioms, there exist natural clustering

functions that satisfy the two properties in that pair (one can even construct such

examples just by varying the stopping criteria for the Single Linkage clustering

function). On the other hand, Kleinberg shows that any clustering algorithm

that minimizes any center-based objective function inevitably fails the consis-

tency property (yet, the k-sum-of-in-cluster-distances minimization clustering

does satisfy Consistency).

The Kleinberg impossibility result can be easily circumvented by varying the

properties. For example, if one wishes to discuss clustering functions that have

a fixed number-of-clusters parameter, then it is natural to replace Richness by

k-Richness (namely, the requirement that every partition of the domain into k

subsets is attainable by the clustering function). k-Richness, Scale Invariance

and Consistency all hold for the k-means clustering and are therefore consistent.

320 Clustering

Alternatively, one can relax the Consistency property. For example, say that two

clusterings C = (C1, . . . Ck) and C ′ = (C ′1, . . . C
′
l) are compatible if for every

clusters Ci ∈ C and C ′j ∈ C ′, either Ci ⊆ C ′j or C ′j ⊆ Ci or Ci ∩ C ′j = ∅ (it is

worthwhile noting that for every dendrogram, every two clusterings that are ob-

tained by trimming that dendrogram are compatible). “Refinement Consistency”

is the requirement that, under the assumptions of the Consistency property, the

new clustering F (X , d′) is compatible with the old clustering F (X , d). Many

common clustering functions satisfy this requirement as well as Scale Invariance

and Richness. Furthermore, one can come up with many other, different, prop-

erties of clustering functions that sound intuitive and desirable and are satisfied

by some common clustering functions.

There are many ways to interpret these results. We suggest to view it as indi-

cating that there is no “ideal” clustering function. Every clustering function will

inevitably have some “undesirable” properties. The choice of a clustering func-

tion for any given task must therefore take into account the specific properties

of that task. There is no generic clustering solution, just as there is no clas-

sification algorithm that will learn every learnable task (as the No-Free-Lunch

theorem shows). Clustering, just like classification prediction, must take into

account some prior knowledge about the specific task at hand.

22.6 Summary

Clustering is an unsupervised learning problem, in which we wish to partition

a set of points into “meaningful” subsets. We presented several clustering ap-

proaches including linkage-based algorithms, the k-means family, spectral clus-

tering, and the information bottleneck. We discussed the difficulty of formalizing

the intuitive meaning of clustering.

22.7 Bibliographic Remarks

The k-means algorithm is sometimes named Lloyd’s algorithm, after Stuart

Lloyd, who proposed the method in 1957. For a more complete overview of

spectral clustering we refer the reader to the excellent tutorial by Von Luxburg

(2007). The information bottleneck method was introduced by Tishby, Pereira

& Bialek (1999). For an additional discussion on the axiomatic approach see

Ackerman & Ben-David (2008).

22.8 Exercises

1. Suboptimality of k-Means: For every parameter t > 1, show that there

exists an instance of the k-means problem for which the k-means algorithm

22.8 Exercises 321

(might) find a solution whose k-means objective is at least t · OPT, where

OPT is the minimum k-means objective.

2. k-Means Might Not Necessarily Converge to a Local Minimum:

Show that the k-means algorithm might converge to a point which is not

a local minimum. Hint: Suppose that k = 2 and the sample points are

{1, 2, 3, 4} ⊂ R suppose we initialize the k-means with the centers {2, 4};
and suppose we break ties in the definition of Ci by assigning i to be the

smallest value in argminj ‖x− µj‖.
3. Given a metric space (X , d), where |X | <∞, and k ∈ N, we would like to find

a partition of X into C1, . . . , Ck which minimizes the expression

Gk−diam((X , d), (C1, . . . , Ck)) = max
j∈[d]

diam(Cj),

where diam(Cj) = maxx,x′∈Cj d(x, x′) (we use the convention diam(Cj) = 0

if |Cj | < 2).

Similarly to the k-means objective, it is NP-hard to minimize the k-

diam objective. Fortunately, we have a very simple approximation algorithm:

Initially, we pick some x ∈ X and set µ1 = x. Then, the algorithm iteratively

sets

∀j ∈ {2, . . . , k}, µj = argmax
x∈X

min
i∈[j−1]

d(x, µi).

Finally, we set

∀i ∈ [k], Ci = {x ∈ X : i = argmin
j∈[k]

d(x, µj)}.

Prove that the algorithm described is a 2-approximation algorithm. That

is, if we denote its output by Ĉ1, . . . , Ĉk, and denote the optimal solution by

C∗1 , . . . , C
∗
k , then,

Gk−diam((X , d), (Ĉ1, . . . , Ĉk)) ≤ 2 ·Gk−diam((X , d), (C∗1 , . . . , C
∗
k)).

Hint: Consider the point µk+1 (in other words, the next center we would have

chosen, if we wanted k + 1 clusters). Let r = minj∈[k] d(µj , µk+1). Prove the

following inequalities

Gk−diam((X , d), (Ĉ1, . . . , Ĉk)) ≤ 2r

Gk−diam((X, d), (C∗1 , . . . , C
∗
k)) ≥ r.

4. Recall that a clustering function, F , is called Center-Based Clustering if, for

some monotonic function f : R+ → R+, on every given input (X , d), F (X , d)

is a clustering that minimizes the objective

Gf ((X , d), (C1, . . . Ck)) = min
µ1,...µk∈X ′

k∑
i=1

∑
x∈Ci

f(d(x, µi)),

where X ′ is either X or some superset of X .

322 Clustering

Prove that for every k > 1 the k-diam clustering function defined in the

previous exercise is not a center-based clustering function.

Hint: Given a clustering input (X , d), with |X | > 2, consider the effect of

adding many close-by points to some (but not all) of the members of X , on

either the k-diam clustering or any given center-based clustering.

5. Recall that we discussed three clustering “properties”: Scale Invariance, Rich-

ness, and Consistency. Consider the Single Linkage clustering algorithm.

1. Find which of the three properties is satisfied by Single Linkage with the

Fixed Number of Clusters (any fixed nonzero number) stopping rule.

2. Find which of the three properties is satisfied by Single Linkage with the

Distance Upper Bound (any fixed nonzero upper bound) stopping rule.

3. Show that for any pair of these properties there exists a stopping criterion

for Single Linkage clustering, under which these two axioms are satisfied.

6. Given some number k, let k-Richness be the following requirement:
For any finite X and every partition C = (C1, . . . Ck) of X (into nonempty subsets)
there exists some dissimilarity function d over X such that F (X , d) = C.

Prove that, for every number k, there exists a clustering function that

satisfies the three properties: Scale Invariance, k-Richness, and Consistency.

23 Dimensionality Reduction

Dimensionality reduction is the process of taking data in a high dimensional

space and mapping it into a new space whose dimensionality is much smaller.

This process is closely related to the concept of (lossy) compression in infor-

mation theory. There are several reasons to reduce the dimensionality of the

data. First, high dimensional data impose computational challenges. Moreover,

in some situations high dimensionality might lead to poor generalization abili-

ties of the learning algorithm (for example, in Nearest Neighbor classifiers the

sample complexity increases exponentially with the dimension—see Chapter 19).

Finally, dimensionality reduction can be used for interpretability of the data, for

finding meaningful structure of the data, and for illustration purposes.

In this chapter we describe popular methods for dimensionality reduction. In

those methods, the reduction is performed by applying a linear transformation

to the original data. That is, if the original data is in Rd and we want to embed

it into Rn (n < d) then we would like to find a matrix W ∈ Rn,d that induces

the mapping x 7→ Wx. A natural criterion for choosing W is in a way that will

enable a reasonable recovery of the original x. It is not hard to show that in

general, exact recovery of x from Wx is impossible (see Exercise 1).

The first method we describe is called Principal Component Analysis (PCA).

In PCA, both the compression and the recovery are performed by linear transfor-

mations and the method finds the linear transformations for which the differences

between the recovered vectors and the original vectors are minimal in the least

squared sense.

Next, we describe dimensionality reduction using random matrices W . We

derive an important lemma, often called the “Johnson-Lindenstrauss lemma,”

which analyzes the distortion caused by such a random dimensionality reduction

technique.

Last, we show how one can reduce the dimension of all sparse vectors using

again a random matrix. This process is known as Compressed Sensing. In this

case, the recovery process is nonlinear but can still be implemented efficiently

using linear programming.

We conclude by underscoring the underlying “prior assumptions” behind PCA

and compressed sensing, which can help us understand the merits and pitfalls of

the two methods.

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

324 Dimensionality Reduction

23.1 Principal Component Analysis (PCA)

Let x1, . . . ,xm be m vectors in Rd. We would like to reduce the dimensional-

ity of these vectors using a linear transformation. A matrix W ∈ Rn,d, where

n < d, induces a mapping x 7→Wx, where Wx ∈ Rn is the lower dimensionality

representation of x. Then, a second matrix U ∈ Rd,n can be used to (approxi-

mately) recover each original vector x from its compressed version. That is, for

a compressed vector y = Wx, where y is in the low dimensional space Rn, we

can construct x̃ = Uy, so that x̃ is the recovered version of x and resides in the

original high dimensional space Rd.
In PCA, we find the compression matrix W and the recovering matrix U so

that the total squared distance between the original and recovered vectors is

minimal; namely, we aim at solving the problem

argmin
W∈Rn,d,U∈Rd,n

m∑
i=1

‖xi − UWxi‖22. (23.1)

To solve this problem we first show that the optimal solution takes a specific

form.

lemma 23.1 Let (U,W) be a solution to Equation (23.1). Then the columns of

U are orthonormal (namely, U>U is the identity matrix of Rn) and W = U>.

Proof Fix any U,W and consider the mapping x 7→ UWx. The range of this

mapping, R = {UWx : x ∈ Rd}, is an n dimensional linear subspace of Rd. Let

V ∈ Rd,n be a matrix whose columns form an orthonormal basis of this subspace,

namely, the range of V is R and V >V = I. Therefore, each vector in R can be

written as V y where y ∈ Rn. For every x ∈ Rd and y ∈ Rn we have

‖x− V y‖22 = ‖x‖2 + y>V >V y − 2y>V >x = ‖x‖2 + ‖y‖2 − 2y>(V >x),

where we used the fact that V >V is the identity matrix of Rn. Minimizing the

preceding expression with respect to y by comparing the gradient with respect

to y to zero gives that y = V >x. Therefore, for each x we have that

V V >x = argmin
x̃∈R

‖x− x̃‖22.

In particular this holds for x1, . . . ,xm and therefore we can replace U,W by

V, V > and by that do not increase the objective

m∑
i=1

‖xi − UWxi‖22 ≥
m∑
i=1

‖xi − V V >xi‖22.

Since this holds for every U,W the proof of the lemma follows.

On the basis of the preceding lemma, we can rewrite the optimization problem

given in Equation (23.1) as follows:

argmin
U∈Rd,n:U>U=I

m∑
i=1

‖xi − UU>xi‖22. (23.2)

23.1 Principal Component Analysis (PCA) 325

We further simplify the optimization problem by using the following elementary

algebraic manipulations. For every x ∈ Rd and a matrix U ∈ Rd,n such that

U>U = I we have

‖x−UU>x‖2 = ‖x‖2 − 2x>UU>x + x>UU>UU>x

= ‖x‖2 − x>UU>x

= ‖x‖2 − trace(U>xx>U), (23.3)

where the trace of a matrix is the sum of its diagonal entries. Since the trace is

a linear operator, this allows us to rewrite Equation (23.2) as follows:

argmax
U∈Rd,n:U>U=I

trace

(
U>

m∑
i=1

xix
>
i U

)
. (23.4)

Let A =
∑m
i=1 xix

>
i . The matrix A is symmetric and therefore it can be

written using its spectral decomposition as A = VDV>, where D is diagonal and

V >V = VV> = I. Here, the elements on the diagonal of D are the eigenvalues of

A and the columns of V are the corresponding eigenvectors. We assume without

loss of generality that D1,1 ≥ D2,2 ≥ · · · ≥ Dd,d. Since A is positive semidefinite

it also holds that Dd,d ≥ 0. We claim that the solution to Equation (23.4) is

the matrix U whose columns are the n eigenvectors of A corresponding to the

largest n eigenvalues.

theorem 23.2 Let x1, . . . ,xm be arbitrary vectors in Rd, let A =
∑m
i=1 xix

>
i ,

and let u1, . . . ,un be n eigenvectors of the matrix A corresponding to the largest

n eigenvalues of A. Then, the solution to the PCA optimization problem given

in Equation (23.1) is to set U to be the matrix whose columns are u1, . . . ,un
and to set W = U>.

Proof Let VDV> be the spectral decomposition of A. Fix some matrix U ∈ Rd,n
with orthonormal columns and let B = V >U . Then, VB = VV>U = U . It

follows that

U>AU = B>V >VDV>VB = B>DB,

and therefore

trace(U>AU) =

d∑
j=1

Dj,j

n∑
i=1

B2
j,i.

Note that B>B = U>VV>U = U>U = I. Therefore, the columns of B are

also orthonormal, which implies that
∑d
j=1

∑n
i=1B

2
j,i = n. In addition, let B̃ ∈

Rd,d be a matrix such that its first n columns are the columns of B and in

addition B̃>B̃ = I. Then, for every j we have
∑d
i=1 B̃

2
j,i = 1, which implies that∑n

i=1B
2
j,i ≤ 1. It follows that:

trace(U>AU) ≤ max
β∈[0,1]d : ‖β‖1≤n

d∑
j=1

Dj,jβj .

326 Dimensionality Reduction

It is not hard to verify (see Exercise 2) that the right-hand side equals to∑n
j=1Dj,j . We have therefore shown that for every matrix U ∈ Rd,n with or-

thonormal columns it holds that trace(U>AU) ≤
∑n
j=1Dj,j . On the other hand,

if we set U to be the matrix whose columns are the n leading eigenvectors of A

we obtain that trace(U>AU) =
∑n
j=1Dj,j , and this concludes our proof.

Remark 23.1 The proof of Theorem 23.2 also tells us that the value of the

objective of Equation (23.4) is
∑n
i=1Di,i. Combining this with Equation (23.3)

and noting that
∑m
i=1 ‖xi‖2 = trace(A) =

∑d
i=1Di,i we obtain that the optimal

objective value of Equation (23.1) is
∑d
i=n+1Di,i.

Remark 23.2 It is a common practice to “center” the examples before applying

PCA. That is, we first calculate µ = 1
m

∑m
i=1 xi and then apply PCA on the

vectors (x1−µ), . . . , (xm−µ). This is also related to the interpretation of PCA

as variance maximization (see Exercise 4).

23.1.1 A More Efficient Solution for the Case d� m

In some situations the original dimensionality of the data is much larger than

the number of examples m. The computational complexity of calculating the

PCA solution as described previously is O(d3) (for calculating eigenvalues of A)

plus O(md2) (for constructing the matrix A). We now show a simple trick that

enables us to calculate the PCA solution more efficiently when d� m.

Recall that the matrix A is defined to be
∑m
i=1 xix

>
i . It is convenient to rewrite

A = X>X where X ∈ Rm,d is a matrix whose ith row is x>i . Consider the

matrix B = XX>. That is, B ∈ Rm,m is the matrix whose i, j element equals

〈xi,xj〉. Suppose that u is an eigenvector of B: That is, Bu = λu for some

λ ∈ R. Multiplying the equality by X> and using the definition of B we obtain

X>XX>u = λX>u. But, using the definition of A, we get that A(X>u) =

λ(X>u). Thus, X>u
‖X>u‖ is an eigenvector of A with eigenvalue of λ.

We can therefore calculate the PCA solution by calculating the eigenvalues of

B instead of A. The complexity is O(m3) (for calculating eigenvalues of B) and

m2d (for constructing the matrix B).

Remark 23.3 The previous discussion also implies that to calculate the PCA

solution we only need to know how to calculate inner products between vectors.

This enables us to calculate PCA implicitly even when d is very large (or even

infinite) using kernels, which yields the kernel PCA algorithm.

23.1.2 Implementation and Demonstration

A pseudocode of PCA is given in the following.

23.1 Principal Component Analysis (PCA) 327

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 23.1 A set of vectors in R2 (blue x’s) and their reconstruction after
dimensionality reduction to R1 using PCA (red circles).

PCA

input

A matrix of m examples X ∈ Rm,d
number of components n

if (m > d)

A = X>X

Let u1, . . . ,un be the eigenvectors of A with largest eigenvalues

else

B = XX>

Let v1, . . . ,vn be the eigenvectors of B with largest eigenvalues

for i = 1, . . . , n set ui = 1
‖X>vi‖ X

>vi

output: u1, . . . ,un

To illustrate how PCA works, let us generate vectors in R2 that approximately

reside on a line, namely, on a one dimensional subspace of R2. For example,

suppose that each example is of the form (x, x+ y) where x is chosen uniformly

at random from [−1, 1] and y is sampled from a Gaussian distribution with mean

0 and standard deviation of 0.1. Suppose we apply PCA on this data. Then, the

eigenvector corresponding to the largest eigenvalue will be close to the vector

(1/
√

2, 1/
√

2). When projecting a point (x, x + y) on this principal component

we will obtain the scalar 2x+y√
2

. The reconstruction of the original vector will be

((x+ y/2), (x+ y/2)). In Figure 23.1 we depict the original versus reconstructed

data.

Next, we demonstrate the effectiveness of PCA on a data set of faces. We

extracted images of faces from the Yale data set (Georghiades, Belhumeur &

Kriegman 2001). Each image contains 50×50 = 2500 pixels; therefore the original

dimensionality is very high.

328 Dimensionality Reduction

x xx x xx x

o oo o oo o

* *
*

*** *
+++ + ++ +

Figure 23.2 Images of faces extracted from the Yale data set. Top-Left: the original
images in R50x50. Top-Right: the images after dimensionality reduction to R10 and
reconstruction. Middle row: an enlarged version of one of the images before and after
PCA. Bottom: The images after dimensionality reduction to R2. The different marks
indicate different individuals.

Some images of faces are depicted on the top-left side of Figure 23.2. Using

PCA, we reduced the dimensionality to R10 and reconstructed back to the orig-

inal dimension, which is 502. The resulting reconstructed images are depicted

on the top-right side of Figure 23.2. Finally, on the bottom of Figure 23.2 we

depict a 2 dimensional representation of the images. As can be seen, even from a

2 dimensional representation of the images we can still roughly separate different

individuals.

23.2 Random Projections 329

23.2 Random Projections

In this section we show that reducing the dimension by using a random linear

transformation leads to a simple compression scheme with a surprisingly low

distortion. The transformation x 7→ Wx, when W is a random matrix, is often

referred to as a random projection. In particular, we provide a variant of a famous

lemma due to Johnson and Lindenstrauss, showing that random projections do

not distort Euclidean distances too much.

Let x1,x2 be two vectors in Rd. A matrix W does not distort too much the

distance between x1 and x2 if the ratio

‖Wx1 −Wx2‖
‖x1 − x2‖

is close to 1. In other words, the distances between x1 and x2 before and after

the transformation are almost the same. To show that ‖Wx1 −Wx2‖ is not too

far away from ‖x1 − x2‖ it suffices to show that W does not distort the norm of

the difference vector x = x1 − x2. Therefore, from now on we focus on the ratio
‖Wx‖
‖x‖ .

We start with analyzing the distortion caused by applying a random projection

to a single vector.

lemma 23.3 Fix some x ∈ Rd. Let W ∈ Rn,d be a random matrix such that

each Wi,j is an independent normal random variable. Then, for every ε ∈ (0, 3)

we have

P

[∣∣∣∣∣‖(1/
√
n)Wx‖2

‖x‖2
− 1

∣∣∣∣∣ > ε

]
≤ 2 e−ε

2n/6.

Proof Without loss of generality we can assume that ‖x‖2 = 1. Therefore, an

equivalent inequality is

P
[
(1− ε)n ≤ ‖Wx‖2 ≤ (1 + ε)n

]
≥ 1− 2e−ε

2n/6.

Let wi be the ith row of W . The random variable 〈wi,x〉 is a weighted sum of

d independent normal random variables and therefore it is normally distributed

with zero mean and variance
∑
j x

2
j = ‖x‖2 = 1. Therefore, the random vari-

able ‖Wx‖2 =
∑n
i=1(〈wi,x〉)2 has a χ2

n distribution. The claim now follows

directly from a measure concentration property of χ2 random variables stated in

Lemma B.12 given in Section B.7.

The Johnson-Lindenstrauss lemma follows from this using a simple union

bound argument.

lemma 23.4 (Johnson-Lindenstrauss Lemma) Let Q be a finite set of vectors

in Rd. Let δ ∈ (0, 1) and n be an integer such that

ε =

√
6 log(2|Q|/δ)

n
≤ 3.

330 Dimensionality Reduction

Then, with probability of at least 1−δ over a choice of a random matrix W ∈ Rn,d
such that each element of W is distributed normally with zero mean and variance

of 1/n we have

sup
x∈Q

∣∣∣∣‖Wx‖2

‖x‖2
− 1

∣∣∣∣ < ε.

Proof Combining Lemma 23.3 and the union bound we have that for every

ε ∈ (0, 3):

P
[

sup
x∈Q

∣∣∣∣‖Wx‖2

‖x‖2
− 1

∣∣∣∣ > ε

]
≤ 2 |Q| e−ε

2n/6.

Let δ denote the right-hand side of the inequality; thus we obtain that

ε =

√
6 log(2|Q|/δ)

n
.

Interestingly, the bound given in Lemma 23.4 does not depend on the original

dimension of x. In fact, the bound holds even if x is in an infinite dimensional

Hilbert space.

23.3 Compressed Sensing

Compressed sensing is a dimensionality reduction technique which utilizes a prior

assumption that the original vector is sparse in some basis. To motivate com-

pressed sensing, consider a vector x ∈ Rd that has at most s nonzero elements.

That is,

‖x‖0
def
= |{i : xi 6= 0}| ≤ s.

Clearly, we can compress x by representing it using s (index,value) pairs. Fur-

thermore, this compression is lossless – we can reconstruct x exactly from the s

(index,value) pairs. Now, lets take one step forward and assume that x = Uα,

where α is a sparse vector, ‖α‖0 ≤ s, and U is a fixed orthonormal matrix. That

is, x has a sparse representation in another basis. It turns out that many nat-

ural vectors are (at least approximately) sparse in some representation. In fact,

this assumption underlies many modern compression schemes. For example, the

JPEG-2000 format for image compression relies on the fact that natural images

are approximately sparse in a wavelet basis.

Can we still compress x into roughly s numbers? Well, one simple way to do

this is to multiply x by U>, which yields the sparse vector α, and then represent

α by its s (index,value) pairs. However, this requires us first to “sense” x, to

store it, and then to multiply it by U>. This raises a very natural question: Why

go to so much effort to acquire all the data when most of what we get will be

thrown away? Cannot we just directly measure the part that will not end up

being thrown away?

23.3 Compressed Sensing 331

Compressed sensing is a technique that simultaneously acquires and com-

presses the data. The key result is that a random linear transformation can

compress x without losing information. The number of measurements needed is

order of s log(d). That is, we roughly acquire only the important information

about the signal. As we will see later, the price we pay is a slower reconstruction

phase. In some situations, it makes sense to save time in compression even at

the price of a slower reconstruction. For example, a security camera should sense

and compress a large amount of images while most of the time we do not need to

decode the compressed data at all. Furthermore, in many practical applications,

compression by a linear transformation is advantageous because it can be per-

formed efficiently in hardware. For example, a team led by Baraniuk and Kelly

has proposed a camera architecture that employs a digital micromirror array to

perform optical calculations of a linear transformation of an image. In this case,

obtaining each compressed measurement is as easy as obtaining a single raw

measurement. Another important application of compressed sensing is medical

imaging, in which requiring fewer measurements translates to less radiation for

the patient.

Informally, the main premise of compressed sensing is the following three “sur-

prising” results:

1. It is possible to reconstruct any sparse signal fully if it was compressed by

x 7→ Wx, where W is a matrix which satisfies a condition called the Re-

stricted Isoperimetric Property (RIP). A matrix that satisfies this property is

guaranteed to have a low distortion of the norm of any sparse representable

vector.

2. The reconstruction can be calculated in polynomial time by solving a linear

program.

3. A random n× d matrix is likely to satisfy the RIP condition provided that n

is greater than an order of s log(d).

Formally,

definition 23.5 (RIP) A matrix W ∈ Rn,d is (ε, s)-RIP if for all x 6= 0 s.t.

‖x‖0 ≤ s we have ∣∣∣∣‖Wx‖22
‖x‖22

− 1

∣∣∣∣ ≤ ε.
The first theorem establishes that RIP matrices yield a lossless compression

scheme for sparse vectors. It also provides a (nonefficient) reconstruction scheme.

theorem 23.6 Let ε < 1 and let W be a (ε, 2s)-RIP matrix. Let x be a vector

s.t. ‖x‖0 ≤ s, let y = Wx be the compression of x, and let

x̃ ∈ argmin
v:Wv=y

‖v‖0

be a reconstructed vector. Then, x̃ = x.

332 Dimensionality Reduction

Proof We assume, by way of contradiction, that x̃ 6= x. Since x satisfies the

constraints in the optimization problem that defines x̃ we clearly have that

‖x̃‖0 ≤ ‖x‖0 ≤ s. Therefore, ‖x − x̃‖0 ≤ 2s and we can apply the RIP in-

equality on the vector x − x̃. But, since W (x − x̃) = 0 we get that |0− 1| ≤ ε,

which leads to a contradiction.

The reconstruction scheme given in Theorem 23.6 seems to be nonefficient

because we need to minimize a combinatorial objective (the sparsity of v). Quite

surprisingly, it turns out that we can replace the combinatorial objective, ‖v‖0,

with a convex objective, ‖v‖1, which leads to a linear programming problem that

can be solved efficiently. This is stated formally in the following theorem.

theorem 23.7 Assume that the conditions of Theorem 23.6 holds and that

ε < 1
1+
√

2
. Then,

x = argmin
v:Wv=y

‖v‖0 = argmin
v:Wv=y

‖v‖1.

In fact, we will prove a stronger result, which holds even if x is not a sparse

vector.

theorem 23.8 Let ε < 1
1+
√

2
and let W be a (ε, 2s)-RIP matrix. Let x be an

arbitrary vector and denote

xs ∈ argmin
v:‖v‖0≤s

‖x− v‖1.

That is, xs is the vector which equals x on the s largest elements of x and equals

0 elsewhere. Let y = Wx be the compression of x and let

x? ∈ argmin
v:Wv=y

‖v‖1

be the reconstructed vector. Then,

‖x? − x‖2 ≤ 2
1 + ρ

1− ρ
s−1/2‖x− xs‖1,

where ρ =
√

2ε/(1− ε).

Note that in the special case that x = xs we get an exact recovery, x? = x, so

Theorem 23.7 is a special case of Theorem 23.8. The proof of Theorem 23.8 is

given in Section 23.3.1.

Finally, the third result tells us that random matrices with n ≥ Ω(s log(d)) are

likely to be RIP. In fact, the theorem shows that multiplying a random matrix

by an orthonormal matrix also provides an RIP matrix. This is important for

compressing signals of the form x = Uα where x is not sparse but α is sparse.

In that case, if W is a random matrix and we compress using y = Wx then this

is the same as compressing α by y = (WU)α and since WU is also RIP we can

reconstruct α (and thus also x) from y.

23.3 Compressed Sensing 333

theorem 23.9 Let U be an arbitrary fixed d × d orthonormal matrix, let ε, δ

be scalars in (0, 1), let s be an integer in [d], and let n be an integer that satisfies

n ≥ 100
s log(40d/(δ ε))

ε2
.

Let W ∈ Rn,d be a matrix s.t. each element of W is distributed normally with

zero mean and variance of 1/n. Then, with proabability of at least 1− δ over the

choice of W , the matrix WU is (ε, s)-RIP.

23.3.1 Proofs*

Proof of Theorem 23.8
We follow a proof due to Candès (2008).

Let h = x? − x. Given a vector v and a set of indices I we denote by vI the

vector whose ith element is vi if i ∈ I and 0 otherwise.

The first trick we use is to partition the set of indices [d] = {1, . . . , d} into

disjoint sets of size s. That is, we will write [d] = T0 ·∪ T1 ·∪ T2 . . . Td/s−1 where

for all i, |Ti| = s, and we assume for simplicity that d/s is an integer. We define

the partition as follows. In T0 we put the s indices corresponding to the s largest

elements in absolute values of x (ties are broken arbitrarily). Let T c0 = [d] \ T0.

Next, T1 will be the s indices corresponding to the s largest elements in absolute

value of hT c0 . Let T0,1 = T0∪T1 and T c0,1 = [d]\T0,1. Next, T2 will correspond to

the s largest elements in absolute value of hT c0,1 . And, we will construct T3, T4, . . .

in the same way.

To prove the theorem we first need the following lemma, which shows that

RIP also implies approximate orthogonality.

lemma 23.10 Let W be an (ε, 2s)-RIP matrix. Then, for any two disjoint sets

I, J , both of size at most s, and for any vector u we have that 〈WuI ,WuJ〉 ≤
ε‖uI‖2 ‖uJ‖2.

Proof W.l.o.g. assume ‖uI‖2 = ‖uJ‖2 = 1.

〈WuI ,WuJ〉 =
‖WuI +WuJ‖22 − ‖WuI −WuJ‖22

4
.

But, since |J ∪ I| ≤ 2s we get from the RIP condition that ‖WuI + WuJ‖22 ≤
(1+ε)(‖uI‖22 +‖uJ‖22) = 2(1+ε) and that −‖WuI−WuJ‖22 ≤ −(1−ε)(‖uI‖22 +

‖uJ‖22) = −2(1− ε), which concludes our proof.

We are now ready to prove the theorem. Clearly,

‖h‖2 = ‖hT0,1 + hT c0,1‖2 ≤ ‖hT0,1‖2 + ‖hT c0,1‖2. (23.5)

To prove the theorem we will show the following two claims:

Claim 1:. ‖hT c0,1‖2 ≤ ‖hT0
‖2 + 2s−1/2‖x− xs‖1.

Claim 2:. ‖hT0,1
‖2 ≤ 2ρ

1−ρs
−1/2‖x− xs‖1.

334 Dimensionality Reduction

Combining these two claims with Equation (23.5) we get that

‖h‖2 ≤ ‖hT0,1
‖2 + ‖hT c0,1‖2 ≤ 2‖hT0,1

‖2 + 2s−1/2‖x− xs‖1

≤ 2
(

2ρ
1−ρ + 1

)
s−1/2‖x− xs‖1

= 2
1 + ρ

1− ρ
s−1/2‖x− xs‖1,

and this will conclude our proof.

Proving Claim 1:
To prove this claim we do not use the RIP condition at all but only use the fact

that x? minimizes the `1 norm. Take j > 1. For each i ∈ Tj and i′ ∈ Tj−1 we

have that |hi| ≤ |hi′ |. Therefore, ‖hTj‖∞ ≤ ‖hTj−1‖1/s. Thus,

‖hTj‖2 ≤ s1/2‖hTj‖∞ ≤ s−1/2‖hTj−1
‖1.

Summing this over j = 2, 3, . . . and using the triangle inequality we obtain that

‖hT c0,1‖2 ≤
∑
j≥2

‖hTj‖2 ≤ s−1/2‖hT c0 ‖1 (23.6)

Next, we show that ‖hT c0 ‖1 cannot be large. Indeed, from the definition of x?

we have that ‖x‖1 ≥ ‖x?‖1 = ‖x + h‖1. Thus, using the triangle inequality we

obtain that

‖x‖1 ≥ ‖x+h‖1 =
∑
i∈T0

|xi+hi|+
∑
i∈T c0

|xi+hi| ≥ ‖xT0
‖1−‖hT0

‖1+‖hT c0 ‖1−‖xT c0 ‖1

(23.7)

and since ‖xT c0 ‖1 = ‖x− xs‖1 = ‖x‖1 − ‖xT0
‖1 we get that

‖hT c0 ‖1 ≤ ‖hT0
‖1 + 2‖xT c0 ‖1. (23.8)

Combining this with Equation (23.6) we get that

‖hT c0,1‖2 ≤ s
−1/2

(
‖hT0‖1 + 2‖xT c0 ‖1

)
≤ ‖hT0‖2 + 2s−1/2‖xT c0 ‖1,

which concludes the proof of claim 1.

Proving Claim 2:
For the second claim we use the RIP condition to get that

(1− ε)‖hT0,1‖22 ≤ ‖WhT0,1‖22. (23.9)

Since WhT0,1
= Wh−

∑
j≥2WhTj = −

∑
j≥2WhTj we have that

‖WhT0,1‖22 = −
∑
j≥2

〈WhT0,1 ,WhTj 〉 = −
∑
j≥2

〈WhT0 +WhT1 ,WhTj 〉.

From the RIP condition on inner products we obtain that for all i ∈ {1, 2} and

j ≥ 2 we have

|〈WhTi ,WhTj 〉| ≤ ε‖hTi‖2‖hTj‖2.

23.3 Compressed Sensing 335

Since ‖hT0
‖2 + ‖hT1

‖2 ≤
√

2‖hT0,1
‖2 we therefore get that

‖WhT0,1‖22 ≤
√

2ε‖hT0,1‖2
∑
j≥2

‖hTj‖2.

Combining this with Equation (23.6) and Equation (23.9) we obtain

(1− ε)‖hT0,1
‖22 ≤

√
2ε‖hT0,1

‖2s−1/2‖hT c0 ‖1.

Rearranging the inequality gives

‖hT0,1
‖2 ≤

√
2ε

1− ε
s−1/2‖hT c0 ‖1.

Finally, using Equation (23.8) we get that

‖hT0,1‖2 ≤ ρs−1/2 (‖hT0‖1 + 2‖xT c0 ‖1) ≤ ρ‖hT0‖2 + 2ρs−1/2‖xT c0 ‖1,

but since ‖hT0‖2 ≤ ‖hT0,1‖2 this implies

‖hT0,1‖2 ≤
2ρ

1− ρ
s−1/2‖xT c0 ‖1,

which concludes the proof of the second claim.

Proof of Theorem 23.9
To prove the theorem we follow an approach due to (Baraniuk, Davenport, De-

Vore & Wakin 2008). The idea is to combine the Johnson-Lindenstrauss (JL)

lemma with a simple covering argument.

We start with a covering property of the unit ball.

lemma 23.11 Let ε ∈ (0, 1). There exists a finite set Q ⊂ Rd of size |Q| ≤
(

3
ε

)d
such that

sup
x:‖x‖≤1

min
v∈Q

‖x− v‖ ≤ ε.

Proof Let k be an integer and let

Q′ = {x ∈ Rd : ∀j ∈ [d],∃i ∈ {−k,−k + 1, . . . , k} s.t. xj = i
k}.

Clearly, |Q′| = (2k + 1)d. We shall set Q = Q′ ∩ B2(1), where B2(1) is the unit

`2 ball of Rd. Since the points in Q′ are distributed evenly on the unit `∞ ball,

the size of Q is the size of Q′ times the ratio between the volumes of the unit `2
and `∞ balls. The volume of the `∞ ball is 2d and the volume of B2(1) is

πd/2

Γ(1 + d/2)
.

For simplicity, assume that d is even and therefore

Γ(1 + d/2) = (d/2)! ≥
(
d/2
e

)d/2
,

336 Dimensionality Reduction

where in the last inequality we used Stirling’s approximation. Overall we obtained

that

|Q| ≤ (2k + 1)d (π/e)d/2 (d/2)−d/2 2−d. (23.10)

Now lets specify k. For each x ∈ B2(1) let v ∈ Q be the vector whose ith element

is sign(xi) b|xi| kc/k. Then, for each element we have that |xi − vi| ≤ 1/k and

thus

‖x− v‖ ≤
√
d

k
.

To ensure that the right-hand side will be at most ε we shall set k = d
√
d/εe.

Plugging this value into Equation (23.10) we conclude that

|Q| ≤ (3
√
d/(2ε))d (π/e)d/2 (d/2)−d/2 =

(
3
ε

√
π
2e

)d
≤
(

3
ε

)d
.

Let x be a vector that can be written as x = Uα with U being some orthonor-

mal matrix and ‖α‖0 ≤ s. Combining the earlier covering property and the JL

lemma (Lemma 23.4) enables us to show that a random W will not distort any

such x.

lemma 23.12 Let U be an orthonormal d × d matrix and let I ⊂ [d] be a set

of indices of size |I| = s. Let S be the span of {Ui : i ∈ I}, where Ui is the ith

column of U . Let δ ∈ (0, 1), ε ∈ (0, 1), and n ∈ N such that

n ≥ 24
log(2/δ) + s log(12/ε)

ε2
.

Then, with probability of at least 1−δ over a choice of a random matrix W ∈ Rn,d
such that each element of W is independently distributed according to N(0, 1/n),

we have

sup
x∈S

∣∣∣∣‖Wx‖
‖x‖

− 1

∣∣∣∣ < ε.

Proof It suffices to prove the lemma for all x ∈ S with ‖x‖ = 1. We can write

x = UIα where α ∈ Rs, ‖α‖2 = 1, and UI is the matrix whose columns are

{Ui : i ∈ I}. Using Lemma 23.11 we know that there exists a set Q of size

|Q| ≤ (12/ε)s such that

sup
α:‖α‖=1

min
v∈Q
‖α− v‖ ≤ (ε/4).

But since U is orthogonal we also have that

sup
α:‖α‖=1

min
v∈Q
‖UIα− UIv‖ ≤ (ε/4).

Applying Lemma 23.4 on the set {UIv : v ∈ Q} we obtain that for n satisfying

23.3 Compressed Sensing 337

the condition given in the lemma, the following holds with probability of at least

1− δ:

sup
v∈Q

∣∣∣∣‖WUIv‖2

‖UIv‖2
− 1

∣∣∣∣ ≤ ε/2,
This also implies that

sup
v∈Q

∣∣∣∣‖WUIv‖
‖UIv‖

− 1

∣∣∣∣ ≤ ε/2.
Let a be the smallest number such that

∀x ∈ S, ‖Wx‖
‖x‖

≤ 1 + a.

Clearly a < ∞. Our goal is to show that a ≤ ε. This follows from the fact that

for any x ∈ S of unit norm there exists v ∈ Q such that ‖x − UIv‖ ≤ ε/4 and

therefore

‖Wx‖ ≤ ‖WUIv‖+ ‖W (x− UIv)‖ ≤ 1 + ε/2 + (1 + a)ε/4.

Thus,

∀x ∈ S, ‖Wx‖
‖x‖

≤ 1 + (ε/2 + (1 + a)ε/4) .

But the definition of a implies that

a ≤ ε/2 + (1 + a)ε/4 ⇒ a ≤ ε/2 + ε/4

1− ε/4
≤ ε.

This proves that for all x ∈ S we have ‖Wx‖
‖x‖ −1 ≤ ε. The other side follows from

this as well since

‖Wx‖ ≥ ‖WUIv‖ − ‖W (x− UIv)‖ ≥ 1− ε/2− (1 + ε)ε/4 ≥ 1− ε.

The preceding lemma tells us that for x ∈ S of unit norm we have

(1− ε) ≤ ‖Wx‖ ≤ (1 + ε),

which implies that

(1− 2 ε) ≤ ‖Wx‖2 ≤ (1 + 3 ε).

The proof of Theorem 23.9 follows from this by a union bound over all choices

of I.

338 Dimensionality Reduction

23.4 PCA or Compressed Sensing?

Suppose we would like to apply a dimensionality reduction technique to a given

set of examples. Which method should we use, PCA or compressed sensing? In

this section we tackle this question, by underscoring the underlying assumptions

behind the two methods.

It is helpful first to understand when each of the methods can guarantee per-

fect recovery. PCA guarantees perfect recovery whenever the set of examples is

contained in an n dimensional subspace of Rd. Compressed sensing guarantees

perfect recovery whenever the set of examples is sparse (in some basis). On the

basis of these observations, we can describe cases in which PCA will be better

than compressed sensing and vice versa.

As a first example, suppose that the examples are the vectors of the standard

basis of Rd, namely, e1, . . . , ed, where each ei is the all zeros vector except 1 in the

ith coordinate. In this case, the examples are 1-sparse. Hence, compressed sensing

will yield a perfect recovery whenever n ≥ Ω(log(d)). On the other hand, PCA

will lead to poor performance, since the data is far from being in an n dimensional

subspace, as long as n < d. Indeed, it is easy ro verify that in such a case, the

averaged recovery error of PCA (i.e., the objective of Equation (23.1) divided by

m) will be (d− n)/d, which is larger than 1/2 whenever n ≤ d/2.

We next show a case where PCA is better than compressed sensing. Consider

m examples that are exactly on an n dimensional subspace. Clearly, in such a

case, PCA will lead to perfect recovery. As to compressed sensing, note that

the examples are n-sparse in any orthonormal basis whose first n vectors span

the subspace. Therefore, compressed sensing would also work if we will reduce

the dimension to Ω(n log(d)). However, with exactly n dimensions, compressed

sensing might fail. PCA has also better resilience to certain types of noise. See

(Chang, Weiss & Freeman 2009) for a discussion.

23.5 Summary

We introduced two methods for dimensionality reduction using linear transfor-

mations: PCA and random projections. We have shown that PCA is optimal in

the sense of averaged squared reconstruction error, if we restrict the reconstruc-

tion procedure to be linear as well. However, if we allow nonlinear reconstruction,

PCA is not necessarily the optimal procedure. In particular, for sparse data, ran-

dom projections can significantly outperform PCA. This fact is at the heart of

the compressed sensing method.

23.6 Bibliographic Remarks 339

23.6 Bibliographic Remarks

PCA is equivalent to best subspace approximation using singular value decom-

position (SVD). The SVD method is described in Appendix C. SVD dates back

to Eugenio Beltrami (1873) and Camille Jordan (1874). It has been rediscovered

many times. In the statistical literature, it was introduced by Pearson (1901). Be-

sides PCA and SVD, there are additional names that refer to the same idea and

are being used in different scientific communities. A few examples are the Eckart-

Young theorem (after Carl Eckart and Gale Young who analyzed the method in

1936), the Schmidt-Mirsky theorem, factor analysis, and the Hotelling transform.

Compressed sensing was introduced in Donoho (2006) and in (Candes & Tao

2005). See also Candes (2006).

23.7 Exercises

1. In this exercise we show that in the general case, exact recovery of a linear

compression scheme is impossible.

1. let A ∈ Rn,d be an arbitrary compression matrix where n ≤ d − 1. Show

that there exists u,v ∈ Rn, u 6= v such that Au = Av.

2. Conclude that exact recovery of a linear compression scheme is impossible.

2. Let α ∈ Rd such that α1 ≥ α2 ≥ · · · ≥ αd ≥ 0. Show that

max
β∈[0,1]d:‖β‖1≤n

d∑
j=1

αjβj =

n∑
j=1

αj .

Hint: Take every vector β ∈ [0, 1]d such that ‖β‖1 ≤ n. Let i be the minimal

index for which βi < 1. If i = n+ 1 we are done. Otherwise, show that we can

increase βi, while possibly decreasing βj for some j > i, and obtain a better

solution. This will imply that the optimal solution is to set βi = 1 for i ≤ n

and βi = 0 for i > n.

3. Kernel PCA: In this exercise we show how PCA can be used for construct-

ing nonlinear dimensionality reduction on the basis of the kernel trick (see

Chapter 16).

Let X be some instance space and let S = {x1, . . . ,xm} be a set of points

in X . Consider a feature mapping ψ : X → V , where V is some Hilbert space

(possibly of infinite dimension). Let K : X × X be a kernel function, that is,

k(x,x′) = 〈ψ(x), ψ(x′)〉. Kernel PCA is the process of mapping the elements

in S into V using ψ, and then applying PCA over {ψ(x1), . . . , ψ(xm)} into

Rn. The output of this process is the set of reduced elements.

Show how this process can be done in polynomial time in terms of m

and n, assuming that each evaluation of K(·, ·) can be calculated in a con-

stant time. In particular, if your implementation requires multiplication of

two matrices A and B, verify that their product can be computed. Similarly,

340 Dimensionality Reduction

if an eigenvalue decomposition of some matrix C is required, verify that this

decomposition can be computed.

4. An Interpretation of PCA as Variance Maximization:

Let x1, . . . ,xm be m vectors in Rd, and let x be a random vector distributed

according to the uniform distribution over x1, . . . ,xm. Assume that E[x] = 0.

1. Consider the problem of finding a unit vector, w ∈ Rd, such that the

random variable 〈w,x〉 has maximal variance. That is, we would like to

solve the problem

argmax
w:‖w‖=1

Var[〈w,x〉] = argmax
w:‖w‖=1

1

m

m∑
i=1

(〈w,xi〉)2.

Show that the solution of the problem is to set w to be the first principle

vector of x1, . . . ,xm.

2. Let w1 be the first principal component as in the previous question. Now,

suppose we would like to find a second unit vector, w2 ∈ Rd, that maxi-

mizes the variance of 〈w2,x〉, but is also uncorrelated to 〈w1,x〉. That is,

we would like to solve:

argmax
w:‖w‖=1, E[(〈w1,x〉)(〈w,x〉)]=0

Var[〈w,x〉].

Show that the solution to this problem is to set w to be the second principal

component of x1, . . . ,xm.

Hint: Note that

E[(〈w1,x〉)(〈w,x〉)] = w>1 E[xx>]w = mw>1 Aw,

where A =
∑
i xix

>
i . Since w is an eigenvector of A we have that the

constraint E[(〈w1,x〉)(〈w,x〉)] = 0 is equivalent to the constraint

〈w1,w〉 = 0.

5. The Relation between SVD and PCA: Use the SVD theorem (Corol-

lary C.6) for providing an alternative proof of Theorem 23.2.

6. Random Projections Preserve Inner Products: The Johnson-Lindenstrauss

lemma tells us that a random projection preserves distances between a finite

set of vectors. In this exercise you need to prove that if the set of vectors are

within the unit ball, then not only are the distances between any two vectors

preserved, but the inner product is also preserved.

Let Q be a finite set of vectors in Rd and assume that for every x ∈ Q we

have ‖x‖ ≤ 1.

1. Let δ ∈ (0, 1) and n be an integer such that

ε =

√
6 log(|Q|2/δ)

n
≤ 3.

Prove that with probability of at least 1 − δ over a choice of a random

23.7 Exercises 341

matrix W ∈ Rn,d, where each element of W is independently distributed

according to N (0, 1/n), we have

|〈Wu,Wv〉 − 〈u,v〉| ≤ ε

for every u,v ∈ Q.

Hint: Use JL to bound both ‖W (u+v)‖
‖u+v‖ and ‖W (u−v)‖

‖u−v‖ .

2. (*) Let x1, . . . ,xm be a set of vectors in Rd of norm at most 1, and assume

that these vectors are linearly separable with margin of γ. Assume that

d� 1/γ2. Show that there exists a constant c > 0 such that if we randomly

project these vectors into Rn, for n = c/γ2, then with probability of at least

99% it holds that the projected vectors are linearly separable with margin

γ/2.

24 Generative Models

We started this book with a distribution free learning framework; namely, we

did not impose any assumptions on the underlying distribution over the data.

Furthermore, we followed a discriminative approach in which our goal is not to

learn the underlying distribution but rather to learn an accurate predictor. In

this chapter we describe a generative approach, in which it is assumed that the

underlying distribution over the data has a specific parametric form and our goal

is to estimate the parameters of the model. This task is called parametric density

estimation.

The discriminative approach has the advantage of directly optimizing the

quantity of interest (the prediction accuracy) instead of learning the underly-

ing distribution. This was phrased as follows by Vladimir Vapnik in his principle

for solving problems using a restricted amount of information:

When solving a given problem, try to avoid a more general problem as an intermediate
step.

Of course, if we succeed in learning the underlying distribution accurately,

we are considered to be “experts” in the sense that we can predict by using

the Bayes optimal classifier. The problem is that it is usually more difficult to

learn the underlying distribution than to learn an accurate predictor. However,

in some situations, it is reasonable to adopt the generative learning approach.

For example, sometimes it is easier (computationally) to estimate the parameters

of the model than to learn a discriminative predictor. Additionally, in some cases

we do not have a specific task at hand but rather would like to model the data

either for making predictions at a later time without having to retrain a predictor

or for the sake of interpretability of the data.

We start with a popular statistical method for estimating the parameters of

the data, which is called the maximum likelihood principle. Next, we describe two

generative assumptions which greatly simplify the learning process. We also de-

scribe the EM algorithm for calculating the maximum likelihood in the presence

of latent variables. We conclude with a brief description of Bayesian reasoning.

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

24.1 Maximum Likelihood Estimator 343

24.1 Maximum Likelihood Estimator

Let us start with a simple example. A drug company developed a new drug to

treat some deadly disease. We would like to estimate the probability of survival

when using the drug. To do so, the drug company sampled a training set of m

people and gave them the drug. Let S = (x1, . . . , xm) denote the training set,

where for each i, xi = 1 if the ith person survived and xi = 0 otherwise. We can

model the underlying distribution using a single parameter, θ ∈ [0, 1], indicating

the probability of survival.

We now would like to estimate the parameter θ on the basis of the training

set S. A natural idea is to use the average number of 1’s in S as an estimator.

That is,

θ̂ =
1

m

m∑
i=1

xi. (24.1)

Clearly, ES [θ̂] = θ. That is, θ̂ is an unbiased estimator of θ. Furthermore, since θ̂ is

the average of m i.i.d. binary random variables we can use Hoeffding’s inequality

to get that with probability of at least 1− δ over the choice of S we have that

|θ̂ − θ| ≤
√

log(2/δ)

2m
. (24.2)

Another interpretation of θ̂ is as the Maximum Likelihood Estimator, as we

formally explain now. We first write the probability of generating the sample S:

P[S = (x1, . . . , xm)] =

m∏
i=1

θxi (1− θ)1−xi = θ
∑
i xi (1− θ)

∑
i(1−xi).

We define the log likelihood of S, given the parameter θ, as the log of the preceding

expression:

L(S; θ) = log (P[S = (x1, . . . , xm)]) = log(θ)
∑
i

xi + log(1− θ)
∑
i

(1− xi).

The maximum likelihood estimator is the parameter that maximizes the likeli-

hood

θ̂ ∈ argmax
θ

L(S; θ). (24.3)

Next, we show that in our case, Equation (24.1) is a maximum likelihood esti-

mator. To see this, we take the derivative of L(S; θ) with respect to θ and equate

it to zero: ∑
i xi
θ
−
∑
i(1− xi)
1− θ

= 0.

Solving the equation for θ we obtain the estimator given in Equation (24.1).

344 Generative Models

24.1.1 Maximum Likelihood Estimation for Continuous Random Variables

Let X be a continuous random variable. Then, for most x ∈ R we have P[X =

x] = 0 and therefore the definition of likelihood as given before is trivialized. To

overcome this technical problem we define the likelihood as log of the density of

the probability of X at x. That is, given an i.i.d. training set S = (x1, . . . , xm)

sampled according to a density distribution Pθ we define the likelihood of S given

θ as

L(S; θ) = log

(
m∏
i=1

Pθ(xi)

)
=

m∑
i=1

log(Pθ(xi)).

As before, the maximum likelihood estimator is a maximizer of L(S; θ) with

respect to θ.

As an example, consider a Gaussian random variable, for which the density

function of X is parameterized by θ = (µ, σ) and is defined as follows:

Pθ(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
.

We can rewrite the likelihood as

L(S; θ) = − 1

2σ2

m∑
i=1

(xi − µ)2 −m log(σ
√

2π).

To find a parameter θ = (µ, σ) that optimizes this we take the derivative of the

likelihood w.r.t. µ and w.r.t. σ and compare it to 0. We obtain the following two

equations:

d

dµ
L(S; θ) =

1

σ2

m∑
i=1

(xi − µ) = 0

d

dσ
L(S; θ) =

1

σ3

m∑
i=1

(xi − µ)2 − m

σ
= 0

Solving the preceding equations we obtain the maximum likelihood estimates:

µ̂ =
1

m

m∑
i=1

xi and σ̂ =

√√√√ 1

m

m∑
i=1

(xi − µ̂)2

Note that the maximum likelihood estimate is not always an unbiased estimator.

For example, while µ̂ is unbiased, it is possible to show that the estimate σ̂ of

the variance is biased (Exercise 1).

Simplifying Notation
To simplify our notation, we use P[X = x] in this chapter to describe both the

probability that X = x (for discrete random variables) and the density of the

distribution at x (for continuous variables).

24.1 Maximum Likelihood Estimator 345

24.1.2 Maximum Likelihood and Empirical Risk Minimization

The maximum likelihood estimator shares some similarity with the Empirical

Risk Minimization (ERM) principle, which we studied extensively in previous

chapters. Recall that in the ERM principle we have a hypothesis class H and

we use the training set for choosing a hypothesis h ∈ H that minimizes the

empirical risk. We now show that the maximum likelihood estimator is an ERM

for a particular loss function.

Given a parameter θ and an observation x, we define the loss of θ on x as

`(θ, x) = − log(Pθ[x]). (24.4)

That is, `(θ, x) is the negation of the log-likelihood of the observation x, assuming

the data is distributed according to Pθ. This loss function is often referred to as

the log-loss. On the basis of this definition it is immediate that the maximum

likelihood principle is equivalent to minimizing the empirical risk with respect

to the loss function given in Equation (24.4). That is,

argmin
θ

m∑
i=1

(− log(Pθ[xi])) = argmax
θ

m∑
i=1

log(Pθ[xi]).

Assuming that the data is distributed according to a distribution P (not neces-

sarily of the parametric form we employ), the true risk of a parameter θ becomes

E
x

[`(θ, x)] = −
∑
x

P[x] log(Pθ[x])

=
∑
x

P[x] log

(
P[x]

Pθ[x]

)
︸ ︷︷ ︸

DRE[P||Pθ]

+
∑
x

P[x] log

(
1

P[x]

)
︸ ︷︷ ︸

H(P)

, (24.5)

where DRE is called the relative entropy , and H is called the entropy func-

tion. The relative entropy is a divergence measure between two probabilities.

For discrete variables, it is always nonnegative and is equal to 0 only if the two

distributions are the same. It follows that the true risk is minimal when Pθ = P.

The expression given in Equation (24.5) underscores how our generative as-

sumption affects our density estimation, even in the limit of infinite data. It

shows that if the underlying distribution is indeed of a parametric form, then by

choosing the correct parameter we can make the risk be the entropy of the distri-

bution. However, if the distribution is not of the assumed parametric form, even

the best parameter leads to an inferior model and the suboptimality is measured

by the relative entropy divergence.

24.1.3 Generalization Analysis

How good is the maximum likelihood estimator when we learn from a finite

training set?

346 Generative Models

To answer this question we need to define how we assess the quality of an approxi-

mated solution of the density estimation problem. Unlike discriminative learning,

where there is a clear notion of “loss,” in generative learning there are various

ways to define the loss of a model. On the basis of the previous subsection, one

natural candidate is the expected log-loss as given in Equation (24.5).

In some situations, it is easy to prove that the maximum likelihood principle

guarantees low true risk as well. For example, consider the problem of estimating

the mean of a Gaussian variable of unit variance. We saw previously that the

maximum likelihood estimator is the average: µ̂ = 1
m

∑
i xi. Let µ? be the optimal

parameter. Then,

E
x∼N(µ?,1)

[`(µ̂, x)− `(µ?, x)] = E
x∼N(µ?,1)

log

(
Pµ? [x]

Pµ̂[x]

)
= E
x∼N(µ?,1)

(
−1

2
(x− µ?)2 +

1

2
(x− µ̂)2

)
=
µ̂2

2
− (µ?)2

2
+ (µ? − µ̂) E

x∼N(µ?,1)
[x]

=
µ̂2

2
− (µ?)2

2
+ (µ? − µ̂)µ?

=
1

2
(µ̂− µ?)2. (24.6)

Next, we note that µ̂ is the average of m Gaussian variables and therefore it is

also distributed normally with mean µ? and variance σ?/m. From this fact we

can derive bounds of the form: with probability of at least 1 − δ we have that

|µ̂− µ?| ≤ ε where ε depends on σ?/m and on δ.

In some situations, the maximum likelihood estimator clearly overfits. For

example, consider a Bernoulli random variable X and let P[X = 1] = θ?. As

we saw previously, using Hoeffding’s inequality we can easily derive a guarantee

on |θ? − θ̂| that holds with high probability (see Equation (24.2)). However, if

our goal is to obtain a small value of the expected log-loss function as defined in

Equation (24.5) we might fail. For example, assume that θ? is nonzero but very

small. Then, the probability that no element of a sample of size m will be 1 is

(1 − θ?)m, which is greater than e−2θ?m. It follows that whenever m ≤ log(2)
2θ? ,

the probability that the sample is all zeros is at least 50%, and in that case, the

maximum likelihood rule will set θ̂ = 0. But the true risk of the estimate θ̂ = 0

is

E
x∼θ?

[`(θ̂, x)] = θ?`(θ̂, 1) + (1− θ?)`(θ̂, 0)

= θ? log(1/θ̂) + (1− θ?) log(1/(1− θ̂))
= θ? log(1/0) =∞.

This simple example shows that we should be careful in applying the maximum

likelihood principle.

To overcome overfitting, we can use the variety of tools we encountered pre-

24.2 Naive Bayes 347

viously in the book. A simple regularization technique is outlined in Exercise

2.

24.2 Naive Bayes

The Naive Bayes classifier is a classical demonstration of how generative as-

sumptions and parameter estimations simplify the learning process. Consider

the problem of predicting a label y ∈ {0, 1} on the basis of a vector of features

x = (x1, . . . , xd), where we assume that each xi is in {0, 1}. Recall that the Bayes

optimal classifier is

hBayes(x) = argmax
y∈{0,1}

P[Y = y|X = x].

To describe the probability function P[Y = y|X = x] we need 2d parameters,

each of which corresponds to P[Y = 1|X = x] for a certain value of x ∈ {0, 1}d.
This implies that the number of examples we need grows exponentially with the

number of features.

In the Naive Bayes approach we make the (rather naive) generative assumption

that given the label, the features are independent of each other. That is,

P[X = x|Y = y] =

d∏
i=1

P[Xi = xi|Y = y].

With this assumption and using Bayes’ rule, the Bayes optimal classifier can be

further simplified:

hBayes(x) = argmax
y∈{0,1}

P[Y = y|X = x]

= argmax
y∈{0,1}

P[Y = y]P[X = x|Y = y]

= argmax
y∈{0,1}

P[Y = y]

d∏
i=1

P[Xi = xi|Y = y]. (24.7)

That is, now the number of parameters we need to estimate is only 2d + 1.

Here, the generative assumption we made reduced significantly the number of

parameters we need to learn.

When we also estimate the parameters using the maximum likelihood princi-

ple, the resulting classifier is called the Naive Bayes classifier.

24.3 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is another demonstration of how generative

assumptions simplify the learning process. As in the Naive Bayes classifier we

consider again the problem of predicting a label y ∈ {0, 1} on the basis of a

348 Generative Models

vector of features x = (x1, . . . , xd). But now the generative assumption is as

follows. First, we assume that P[Y = 1] = P[Y = 0] = 1/2. Second, we assume

that the conditional probability of X given Y is a Gaussian distribution. Finally,

the covariance matrix of the Gaussian distribution is the same for both values

of the label. Formally, let µ0,µ1 ∈ Rd and let Σ be a covariance matrix. Then,

the density distribution is given by

P[X = x|Y = y] =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µy)TΣ−1(x− µy)

)
.

As we have shown in the previous section, using Bayes’ rule we can write

hBayes(x) = argmax
y∈{0,1}

P[Y = y]P[X = x|Y = y].

This means that we will predict hBayes(x) = 1 iff

log

(
P[Y = 1]P[X = x|Y = 1]

P[Y = 0]P[X = x|Y = 0]

)
> 0.

This ratio is often called the log-likelihood ratio.

In our case, the log-likelihood ratio becomes

1
2 (x− µ0)TΣ−1(x− µ0)− 1

2 (x− µ1)TΣ−1(x− µ1)

We can rewrite this as 〈w,x〉+ b where

w = (µ1 − µ0)TΣ−1 and b = 1
2

(
µT0 Σ−1µ0 − µT1 Σ−1µ1

)
. (24.8)

As a result of the preceding derivation we obtain that under the aforemen-

tioned generative assumptions, the Bayes optimal classifier is a linear classifier.

Additionally, one may train the classifier by estimating the parameter µ0,µ1

and Σ from the data, using, for example, the maximum likelihood estimator.

With those estimators at hand, the values of w and b can be calculated as in

Equation (24.8).

24.4 Latent Variables and the EM Algorithm

In generative models we assume that the data is generated by sampling from

a specific parametric distribution over our instance space X . Sometimes, it is

convenient to express this distribution using latent random variables. A natural

example is a mixture of k Gaussian distributions. That is, X = Rd and we

assume that each x is generated as follows. First, we choose a random number in

{1, . . . , k}. Let Y be a random variable corresponding to this choice, and denote

P[Y = y] = cy. Second, we choose x on the basis of the value of Y according to

a Gaussian distribution

P[X = x|Y = y] =
1

(2π)d/2|Σy|1/2
exp

(
−1

2
(x− µy)TΣ−1

y (x− µy)

)
. (24.9)

24.4 Latent Variables and the EM Algorithm 349

Therefore, the density of X can be written as:

P[X = x] =

k∑
y=1

P[Y = y]P[X = x|Y = y]

=

k∑
y=1

cy
1

(2π)d/2|Σy|1/2
exp

(
−1

2
(x− µy)TΣ−1

y (x− µy)

)
.

Note that Y is a hidden variable that we do not observe in our data. Neverthe-

less, we introduce Y since it helps us describe a simple parametric form of the

probability of X.

More generally, let θ be the parameters of the joint distribution of X and Y

(e.g., in the preceding example, θ consists of cy, µy, and Σy, for all y = 1, . . . , k).

Then, the log-likelihood of an observation x can be written as

log (Pθ[X = x]) = log

(
k∑
y=1

Pθ[X = x, Y = y]

)
.

Given an i.i.d. sample, S = (x1, . . . ,xm), we would like to find θ that maxi-

mizes the log-likelihood of S,

L(θ) = log

m∏
i=1

Pθ[X = xi]

=

m∑
i=1

logPθ[X = xi]

=

m∑
i=1

log

(
k∑
y=1

Pθ[X = xi, Y = y]

)
.

The maximum-likelihood estimator is therefore the solution of the maximization

problem

argmax
θ

L(θ) = argmax
θ

m∑
i=1

log

(
k∑
y=1

Pθ[X = xi, Y = y]

)
.

In many situations, the summation inside the log makes the preceding opti-

mization problem computationally hard. The Expectation-Maximization (EM)

algorithm, due to Dempster, Laird, and Rubin, is an iterative procedure for

searching a (local) maximum of L(θ). While EM is not guaranteed to find the

global maximum, it often works reasonably well in practice.

EM is designed for those cases in which, had we known the values of the latent

variables Y , then the maximum likelihood optimization problem would have been

tractable. More precisely, define the following function over m× k matrices and

the set of parameters θ:

F (Q,θ) =

m∑
i=1

k∑
y=1

Qi,y log (Pθ[X = xi, Y = y]) .

350 Generative Models

If each row of Q defines a probability over the ith latent variable given X = xi,

then we can interpret F (Q,θ) as the expected log-likelihood of a training set

(x1, y1), . . . , (xm, ym), where the expectation is with respect to the choice of

each yi on the basis of the ith row of Q. In the definition of F , the summation is

outside the log, and we assume that this makes the optimization problem with

respect to θ tractable:

assumption 24.1 For any matrix Q ∈ [0, 1]m,k, such that each row of Q sums

to 1, the optimization problem

argmax
θ

F (Q,θ)

is tractable.

The intuitive idea of EM is that we have a “chicken and egg” problem. On one

hand, had we known Q, then by our assumption, the optimization problem of

finding the best θ is tractable. On the other hand, had we known the parameters

θ we could have set Qi,y to be the probability of Y = y given that X = xi.

The EM algorithm therefore alternates between finding θ given Q and finding Q

given θ. Formally, EM finds a sequence of solutions (Q(1),θ(1)), (Q(2),θ(2)), . . .

where at iteration t, we construct (Q(t+1),θ(t+1)) by performing two steps.

• Expectation Step: Set

Q
(t+1)
i,y = Pθ(t) [Y = y|X = xi]. (24.10)

This step is called the Expectation step, because it yields a new probabil-

ity over the latent variables, which defines a new expected log-likelihood

function over θ.

• Maximization Step: Set θ(t+1) to be the maximizer of the expected log-

likelihood, where the expectation is according to Q(t+1):

θ(t+1) = argmax
θ

F (Q(t+1),θ). (24.11)

By our assumption, it is possible to solve this optimization problem effi-

ciently.

The initial values of θ(1) and Q(1) are usually chosen at random and the

procedure terminates after the improvement in the likelihood value stops being

significant.

24.4.1 EM as an Alternate Maximization Algorithm

To analyze the EM algorithm, we first view it as an alternate maximization

algorithm. Define the following objective function

G(Q,θ) = F (Q,θ)−
m∑
i=1

k∑
y=1

Qi,y log(Qi,y).

24.4 Latent Variables and the EM Algorithm 351

The second term is the sum of the entropies of the rows of Q. Let

Q =

{
Q ∈ [0, 1]m,k : ∀i,

k∑
y=1

Qi,y = 1

}

be the set of matrices whose rows define probabilities over [k]. The following

lemma shows that EM performs alternate maximization iterations for maximiz-

ing G.

lemma 24.2 The EM procedure can be rewritten as:

Q(t+1) = argmax
Q∈Q

G(Q,θ(t))

θ(t+1) = argmax
θ

G(Q(t+1),θ) .

Furthermore, G(Q(t+1),θ(t)) = L(θ(t)).

Proof Given Q(t+1) we clearly have that

argmax
θ

G(Q(t+1),θ) = argmax
θ

F (Q(t+1),θ).

Therefore, we only need to show that for any θ, the solution of argmaxQ∈QG(Q,θ)

is to set Qi,y = Pθ[Y = y|X = xi]. Indeed, by Jensen’s inequality, for any Q ∈ Q
we have that

G(Q,θ) =

m∑
i=1

(
k∑
y=1

Qi,y log

(
Pθ[X = xi, Y = y]

Qi,y

))

≤
m∑
i=1

(
log

(
k∑
y=1

Qi,y
Pθ[X = xi, Y = y]

Qi,y

))

=

m∑
i=1

log

(
k∑
y=1

Pθ[X = xi, Y = y]

)

=

m∑
i=1

log (Pθ[X = xi]) = L(θ),

352 Generative Models

while for Qi,y = Pθ[Y = y|X = xi] we have

G(Q,θ) =

m∑
i=1

(
k∑
y=1

Pθ[Y = y|X = xi] log

(
Pθ[X = xi, Y = y]

Pθ[Y = y|X = xi]

))

=

m∑
i=1

k∑
y=1

Pθ[Y = y|X = xi] log (Pθ[X = xi])

=

m∑
i=1

log (Pθ[X = xi])

k∑
y=1

Pθ[Y = y|X = xi]

=

m∑
i=1

log (Pθ[X = xi]) = L(θ).

This shows that setting Qi,y = Pθ[Y = y|X = xi] maximizes G(Q,θ) over Q ∈ Q
and shows that G(Q(t+1),θ(t)) = L(θ(t)).

The preceding lemma immediately implies:

theorem 24.3 The EM procedure never decreases the log-likelihood; namely,

for all t,

L(θ(t+1)) ≥ L(θ(t)).

Proof By the lemma we have

L(θ(t+1)) = G(Q(t+2),θ(t+1)) ≥ G(Q(t+1),θ(t)) = L(θ(t)).

24.4.2 EM for Mixture of Gaussians (Soft k-Means)

Consider the case of a mixture of k Gaussians in which θ is a triplet (c, {µ1, . . . ,µk}, {Σ1, . . . ,Σk})
where Pθ[Y = y] = cy and Pθ[X = x|Y = y] is as given in Equation (24.9). For

simplicity, we assume that Σ1 = Σ2 = · · · = Σk = I, where I is the identity

matrix. Specifying the EM algorithm for this case we obtain the following:

• Expectation step: For each i ∈ [m] and y ∈ [k] we have that

Pθ(t) [Y = y|X = xi] =
1

Zi
Pθ(t) [Y = y]Pθ(t) [X = xi|Y = y]

=
1

Zi
c(t)y exp

(
−1

2
‖xi − µ(t)

y ‖2
)
, (24.12)

where Zi is a normalization factor which ensures that
∑
y Pθ(t) [Y = y|X =

xi] sums to 1.

• Maximization step: We need to set θt+1 to be a maximizer of Equation (24.11),

24.5 Bayesian Reasoning 353

which in our case amounts to maximizing the following expression w.r.t. c

and µ:

m∑
i=1

k∑
y=1

Pθ(t) [Y = y|X = xi]

(
log(cy)− 1

2
‖xi − µy‖2

)
. (24.13)

Comparing the derivative of Equation (24.13) w.r.t. µy to zero and rear-

ranging terms we obtain:

µy =

∑m
i=1 Pθ(t) [Y = y|X = xi] xi∑m
i=1 Pθ(t) [Y = y|X = xi]

.

That is, µy is a weighted average of the xi where the weights are according

to the probabilities calculated in the E step. To find the optimal c we need

to be more careful since we must ensure that c is a probability vector. In

Exercise 3 we show that the solution is:

cy =

∑m
i=1 Pθ(t) [Y = y|X = xi]∑k

y′=1

∑m
i=1 Pθ(t) [Y = y′|X = xi]

. (24.14)

It is interesting to compare the preceding algorithm to the k-means algorithm

described in Chapter 22. In the k-means algorithm, we first assign each example

to a cluster according to the distance ‖xi − µy‖. Then, we update each center

µy according to the average of the examples assigned to this cluster. In the EM

approach, however, we determine the probability that each example belongs to

each cluster. Then, we update the centers on the basis of a weighted sum over

the entire sample. For this reason, the EM approach for k-means is sometimes

called “soft k-means.”

24.5 Bayesian Reasoning

The maximum likelihood estimator follows a frequentist approach. This means

that we refer to the parameter θ as a fixed parameter and the only problem is

that we do not know its value. A different approach to parameter estimation

is called Bayesian reasoning. In the Bayesian approach, our uncertainty about

θ is also modeled using probability theory. That is, we think of θ as a random

variable as well and refer to the distribution P[θ] as a prior distribution. As its

name indicates, the prior distribution should be defined by the learner prior to

observing the data.

As an example, let us consider again the drug company which developed a

new drug. On the basis of past experience, the statisticians at the drug company

believe that whenever a drug has reached the level of clinic experiments on

people, it is likely to be effective. They model this prior belief by defining a

density distribution on θ such that

P[θ] =

{
0.8 if θ > 0.5

0.2 if θ ≤ 0.5
(24.15)

354 Generative Models

As before, given a specific value of θ, it is assumed that the conditional proba-

bility, P[X = x|θ], is known. In the drug company example, X takes values in

{0, 1} and P[X = x|θ] = θx(1− θ)1−x.

Once the prior distribution over θ and the conditional distribution over X

given θ are defined, we again have complete knowledge of the distribution over

X. This is because we can write the probability over X as a marginal probability

P[X = x] =
∑
θ

P[X = x, θ] =
∑
θ

P[θ]P[X = x|θ],

where the last equality follows from the definition of conditional probability. If

θ is continuous we replace P[θ] with the density function and the sum becomes

an integral:

P[X = x] =

∫
θ

P[θ]P[X = x|θ] dθ.

Seemingly, once we know P[X = x], a training set S = (x1, . . . , xm) tells us

nothing as we are already experts who know the distribution over a new point

X. However, the Bayesian view introduces dependency between S and X. This is

because we now refer to θ as a random variable. A new point X and the previous

points in S are independent only conditioned on θ. This is different from the

frequentist philosophy in which θ is a parameter that we might not know, but

since it is just a parameter of the distribution, a new point X and previous points

S are always independent.

In the Bayesian framework, since X and S are not independent anymore, what

we would like to calculate is the probability of X given S, which by the chain

rule can be written as follows:

P[X = x|S] =
∑
θ

P[X = x|θ, S]P[θ|S] =
∑
θ

P[X = x|θ]P[θ|S].

The second inequality follows from the assumption that X and S are independent

when we condition on θ. Using Bayes’ rule we have

P[θ|S] =
P[S|θ]P[θ]

P[S]
,

and together with the assumption that points are independent conditioned on θ,

we can write

P[θ|S] =
P[S|θ]P[θ]

P[S]
=

1

P[S]

m∏
i=1

P[X = xi|θ]P[θ].

We therefore obtain the following expression for Bayesian prediction:

P[X = x|S] =
1

P[S]

∑
θ

P[X = x|θ]
m∏
i=1

P[X = xi|θ]P[θ]. (24.16)

Getting back to our drug company example, we can rewrite P[X = x|S] as

P[X = x|S] =
1

P [S]

∫
θx+

∑
i xi(1− θ)1−x+

∑
i(1−xi) P[θ] dθ.

24.6 Summary 355

It is interesting to note that when P[θ] is uniform we obtain that

P[X = x|S] ∝
∫
θx+

∑
i xi(1− θ)1−x+

∑
i(1−xi) dθ.

Solving the preceding integral (using integration by parts) we obtain

P[X = 1|S] =
(
∑
i xi) + 1

m+ 2
.

Recall that the prediction according to the maximum likelihood principle in this

case is P[X = 1|θ̂] =
∑
i xi
m . The Bayesian prediction with uniform prior is rather

similar to the maximum likelihood prediction, except it adds “pseudoexamples”

to the training set, thus biasing the prediction toward the uniform prior.

Maximum A Posteriori
In many situations, it is difficult to find a closed form solution to the integral

given in Equation (24.16). Several numerical methods can be used to approxi-

mate this integral. Another popular solution is to find a single θ which maximizes

P[θ|S]. The value of θ which maximizes P[θ|S] is called the Maximum A Poste-

riori estimator. Once this value is found, we can calculate the probability that

X = x given the maximum a posteriori estimator and independently on S.

24.6 Summary

In the generative approach to machine learning we aim at modeling the distri-

bution over the data. In particular, in parametric density estimation we further

assume that the underlying distribution over the data has a specific paramet-

ric form and our goal is to estimate the parameters of the model. We have

described several principles for parameter estimation, including maximum like-

lihood, Bayesian estimation, and maximum a posteriori. We have also described

several specific algorithms for implementing the maximum likelihood under dif-

ferent assumptions on the underlying data distribution, in particular, Naive

Bayes, LDA, and EM.

24.7 Bibliographic Remarks

The maximum likelihood principle was studied by Ronald Fisher in the beginning

of the 20th century. Bayesian statistics follow Bayes’ rule, which is named after

the 18th century English mathematician Thomas Bayes.

There are many excellent books on the generative and Bayesian approaches

to machine learning. See, for example, (Bishop 2006, Koller & Friedman 2009,

MacKay 2003, Murphy 2012, Barber 2012).

356 Generative Models

24.8 Exercises

1. Prove that the maximum likelihood estimator of the variance of a Gaussian

variable is biased.

2. Regularization for Maximum Likelihood: Consider the following regularized

loss minimization:

1

m

m∑
i=1

log(1/Pθ[xi]) +
1

m
(log(1/θ) + log(1/(1− θ))) .

• Show that the preceding objective is equivalent to the usual empirical error

had we added two pseudoexamples to the training set. Conclude that

the regularized maximum likelihood estimator would be

θ̂ =
1

m+ 2

(
1 +

m∑
i=1

xi

)
.

• Derive a high probability bound on |θ̂−θ?|. Hint: Rewrite this as |θ̂−E[θ̂]+

E[θ̂]− θ?| and then use the triangle inequality and Hoeffding inequality.

• Use this to bound the true risk. Hint: Use the fact that now θ̂ ≥ 1
m+2 to

relate |θ̂ − θ?| to the relative entropy.

3. • Consider a general optimization problem of the form:

max
c

k∑
y=1

νy log(cy) s.t. cy > 0,
∑
y

cy = 1 ,

where ν ∈ Rk+ is a vector of nonnegative weights. Verify that the M step

of soft k-means involves solving such an optimization problem.

• Let c? = 1∑
y νy

ν. Show that c? is a probability vector.

• Show that the optimization problem is equivalent to the problem:

min
c
DRE(c?||c) s.t. cy > 0,

∑
y

cy = 1 .

• Using properties of the relative entropy, conclude that c? is the solution to

the optimization problem.

25 Feature Selection and Generation

In the beginning of the book, we discussed the abstract model of learning, in

which the prior knowledge utilized by the learner is fully encoded by the choice

of the hypothesis class. However, there is another modeling choice, which we

have so far ignored: How do we represent the instance space X ? For example, in

the papayas learning problem, we proposed the hypothesis class of rectangles in

the softness-color two dimensional plane. That is, our first modeling choice was

to represent a papaya as a two dimensional point corresponding to its softness

and color. Only after that did we choose the hypothesis class of rectangles as a

class of mappings from the plane into the label set. The transformation from the

real world object “papaya” into the scalar representing its softness or its color

is called a feature function or a feature for short; namely, any measurement of

the real world object can be regarded as a feature. If X is a subset of a vector

space, each x ∈ X is sometimes referred to as a feature vector. It is important to

understand that the way we encode real world objects as an instance space X is

by itself prior knowledge about the problem.

Furthermore, even when we already have an instance space X which is rep-

resented as a subset of a vector space, we might still want to change it into a

different representation and apply a hypothesis class on top of it. That is, we

may define a hypothesis class on X by composing some class H on top of a

feature function which maps X into some other vector space X ′. We have al-

ready encountered examples of such compositions – in Chapter 15 we saw that

kernel-based SVM learns a composition of the class of halfspaces over a feature

mapping ψ that maps each original instance in X into some Hilbert space. And,

indeed, the choice of ψ is another form of prior knowledge we impose on the

problem.

In this chapter we study several methods for constructing a good feature set.

We start with the problem of feature selection, in which we have a large pool

of features and our goal is to select a small number of features that will be

used by our predictor. Next, we discuss feature manipulations and normalization.

These include simple transformations that we apply on our original features. Such

transformations may decrease the sample complexity of our learning algorithm,

its bias, or its computational complexity. Last, we discuss several approaches for

feature learning. In these methods, we try to automate the process of feature

construction.

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

358 Feature Selection and Generation

We emphasize that while there are some common techniques for feature learn-

ing one may want to try, the No-Free-Lunch theorem implies that there is no ulti-

mate feature learner. Any feature learning algorithm might fail on some problem.

In other words, the success of each feature learner relies (sometimes implicitly)

on some form of prior assumption on the data distribution. Furthermore, the

relative quality of features highly depends on the learning algorithm we are later

going to apply using these features. This is illustrated in the following example.

Example 25.1 Consider a regression problem in which X = R2, Y = R, and

the loss function is the squared loss. Suppose that the underlying distribution

is such that an example (x, y) is generated as follows: First, we sample x1 from

the uniform distribution over [−1, 1]. Then, we deterministically set y = x1
2.

Finally, the second feature is set to be x2 = y + z, where z is sampled from the

uniform distribution over [−0.01, 0.01]. Suppose we would like to choose a single

feature. Intuitively, the first feature should be preferred over the second feature

as the target can be perfectly predicted based on the first feature alone, while it

cannot be perfectly predicted based on the second feature. Indeed, choosing the

first feature would be the right choice if we are later going to apply polynomial

regression of degree at least 2. However, if the learner is going to be a linear

regressor, then we should prefer the second feature over the first one, since the

optimal linear predictor based on the first feature will have a larger risk than

the optimal linear predictor based on the second feature.

25.1 Feature Selection

Throughout this section we assume that X = Rd. That is, each instance is repre-

sented as a vector of d features. Our goal is to learn a predictor that only relies

on k � d features. Predictors that use only a small subset of features require a

smaller memory footprint and can be applied faster. Furthermore, in applications

such as medical diagnostics, obtaining each possible “feature” (e.g., test result)

can be costly; therefore, a predictor that uses only a small number of features

is desirable even at the cost of a small degradation in performance, relative to

a predictor that uses more features. Finally, constraining the hypothesis class to

use a small subset of features can reduce its estimation error and thus prevent

overfitting.

Ideally, we could have tried all subsets of k out of d features and choose the

subset which leads to the best performing predictor. However, such an exhaustive

search is usually computationally intractable. In the following we describe three

computationally feasible approaches for feature selection. While these methods

cannot guarantee finding the optimal subset, they often work reasonably well in

practice. Some of the methods come with formal guarantees on the quality of the

selected subsets under certain assumptions. We do not discuss these guarantees

here.

25.1 Feature Selection 359

25.1.1 Filters

Maybe the simplest approach for feature selection is the filter method, in which

we assess individual features, independently of other features, according to some

quality measure. We can then select the k features that achieve the highest score

(alternatively, decide also on the number of features to select according to the

value of their scores).

Many quality measures for features have been proposed in the literature.

Maybe the most straightforward approach is to set the score of a feature ac-

cording to the error rate of a predictor that is trained solely by that feature.

To illustrate this, consider a linear regression problem with the squared loss.

Let v = (x1,j , . . . , xm,j) ∈ Rm be a vector designating the values of the jth

feature on a training set of m examples and let y = (y1, . . . , ym) ∈ Rm be the

values of the target on the same m examples. The empirical squared loss of an

ERM linear predictor that uses only the jth feature would be

min
a,b∈R

1

m
‖av + b− y‖2,

where the meaning of adding a scalar b to a vector v is adding b to all coordinates

of v. To solve this problem, let v̄ = 1
m

∑m
i=1 vi be the averaged value of the

feature and let ȳ = 1
m

∑m
i=1 yi be the averaged value of the target. Clearly (see

Exercise 1),

min
a,b∈R

1

m
‖av + b− y‖2 = min

a,b∈R

1

m
‖a(v − v̄) + b− (y − ȳ)‖2. (25.1)

Taking the derivative of the right-hand side objective with respect to b and

comparing it to zero we obtain that b = 0. Similarly, solving for a (once we know

that b = 0) yields a = 〈v− v̄,y− ȳ〉/‖v− v̄‖2. Plugging this value back into the

objective we obtain the value

‖y − ȳ‖2 − (〈v − v̄,y − ȳ〉)2

‖v − v̄‖2
.

Ranking the features according to the minimal loss they achieve is equivalent

to ranking them according to the absolute value of the following score (where

now a higher score yields a better feature):

〈v − v̄,y − ȳ〉
‖v − v̄‖ ‖y − ȳ‖

=
1
m 〈v − v̄,y − ȳ〉√

1
m‖v − v̄‖2

√
1
m‖y − ȳ‖2

. (25.2)

The preceding expression is known as Pearson’s correlation coefficient. The nu-

merator is the empirical estimate of the covariance of the jth feature and the

target value, E[(v − E v)(y − E y)], while the denominator is the squared root of

the empirical estimate for the variance of the jth feature, E[(v − E v)2], times

the variance of the target. Pearson’s coefficient ranges from −1 to 1, where if

the Pearson’s coefficient is either 1 or −1, there is a linear mapping from v to y

with zero empirical risk.

360 Feature Selection and Generation

If Pearson’s coefficient equals zero it means that the optimal linear function

from v to y is the all-zeros function, which means that v alone is useless for

predicting y. However, this does not mean that v is a bad feature, as it might

be the case that together with other features v can perfectly predict y. Indeed,

consider a simple example in which the target is generated by the function y =

x1 + 2x2. Assume also that x1 is generated from the uniform distribution over

{±1}, and x2 = − 1
2x1 + 1

2z, where z is also generated i.i.d. from the uniform

distribution over {±1}. Then, E[x1] = E[x2] = E[y] = 0, and we also have

E[yx1] = E[x2
1] + 2E[x2x1] = E[x2

1]− E[x2
1] + E[zx1] = 0.

Therefore, for a large enough training set, the first feature is likely to have a

Pearson’s correlation coefficient that is close to zero, and hence it will most

probably not be selected. However, no function can predict the target value well

without knowing the first feature.

There are many other score functions that can be used by a filter method.

Notable examples are estimators of the mutual information or the area under

the receiver operating characteristic (ROC) curve. All of these score functions

suffer from similar problems to the one illustrated previously. We refer the reader

to Guyon & Elisseeff (2003).

25.1.2 Greedy Selection Approaches

Greedy selection is another popular approach for feature selection. Unlike filter

methods, greedy selection approaches are coupled with the underlying learning

algorithm. The simplest instance of greedy selection is forward greedy selection.

We start with an empty set of features, and then we gradually add one feature

at a time to the set of selected features. Given that our current set of selected

features is I, we go over all i /∈ I, and apply the learning algorithm on the set

of features I ∪ {i}. Each such application yields a different predictor, and we

choose to add the feature that yields the predictor with the smallest risk (on

the training set or on a validation set). This process continues until we either

select k features, where k is a predefined budget of allowed features, or achieve

an accurate enough predictor.

Example 25.2 (Orthogonal Matching Pursuit) To illustrate the forward

greedy selection approach, we specify it to the problem of linear regression with

the squared loss. Let X ∈ Rm,d be a matrix whose rows are the m training

instances. Let y ∈ Rm be the vector of the m labels. For every i ∈ [d], let Xi

be the ith column of X. Given a set I ⊂ [d] we denote by XI the matrix whose

columns are {Xi : i ∈ I}.
The forward greedy selection method starts with I0 = ∅. At iteration t, we

look for the feature index jt, which is in

argmin
j

min
w∈Rt

‖XIt−1∪{j}w − y‖2.

25.1 Feature Selection 361

Then, we update It = It−1 ∪ {jt}.
We now describe a more efficient implementation of the forward greedy selec-

tion approach for linear regression which is called Orthogonal Matching Pursuit

(OMP). The idea is to keep an orthogonal basis of the features aggregated so

far. Let Vt be a matrix whose columns form an orthonormal basis of the columns

of XIt .

Clearly,

min
w
‖XItw − y‖2 = min

θ∈Rt
‖Vtθ − y‖2.

We will maintain a vector θt which minimizes the right-hand side of the equation.

Initially, we set I0 = ∅, V0 = ∅, and θ1 to be the empty vector. At round t, for

every j, we decompose Xj = vj + uj where vj = Vt−1V
>
t−1Xj is the projection

of Xj onto the subspace spanned by Vt−1 and uj is the part of Xj orthogonal to

Vt−1 (see Appendix C). Then,

min
θ,α
‖Vt−1θ + αuj − y‖2

= min
θ,α

[
‖Vt−1θ − y‖2 + α2‖uj‖2 + 2α〈uj , Vt−1θ − y〉

]
= min

θ,α

[
‖Vt−1θ − y‖2 + α2‖uj‖2 + 2α〈uj ,−y〉

]
= min

θ

[
‖Vt−1θ − y‖2

]
+ min

α

[
α2‖uj‖2 − 2α〈uj ,y〉

]
=
[
‖Vt−1θt−1 − y‖2

]
+ min

α

[
α2‖uj‖2 − 2α〈uj ,y〉

]
= ‖Vt−1θt−1 − y‖2 − (〈uj ,y〉)2

‖uj‖2
.

It follows that we should select the feature

jt = argmax
j

(〈uj ,y〉)2

‖uj‖2
.

The rest of the update is to set

Vt =

[
Vt−1,

ujt
‖ujt‖2

]
, θt =

[
θt−1 ;

〈ujt ,y〉
‖ujt‖2

]
.

The OMP procedure maintains an orthonormal basis of the selected features,

where in the preceding description, the orthonormalization property is obtained

by a procedure similar to Gram-Schmidt orthonormalization. In practice, the

Gram-Schmidt procedure is often numerically unstable. In the pseudocode that

follows we use SVD (see Section C.4) at the end of each round to obtain an

orthonormal basis in a numerically stable manner.

362 Feature Selection and Generation

Orthogonal Matching Pursuit (OMP)

input:

data matrix X ∈ Rm,d, labels vector y ∈ Rm,

budget of features T

initialize: I1 = ∅
for t = 1, . . . , T

use SVD to find an orthonormal basis V ∈ Rm,t−1 of XIt

(for t = 1 set V to be the all zeros matrix)

foreach j ∈ [d] \ It let uj = Xj − V V >Xj

let jt = argmaxj /∈It:‖uj‖>0
(〈uj ,y〉)2
‖uj‖2

update It+1 = It ∪ {jt}
output IT+1

More Efficient Greedy Selection Criteria
Let R(w) be the empirical risk of a vector w. At each round of the forward

greedy selection method, and for every possible j, we should minimize R(w)

over the vectors w whose support is It−1 ∪ {j}. This might be time consuming.

A simpler approach is to choose jt that minimizes

argmin
j

min
η∈R

R(wt−1 + ηej),

where ej is the all zeros vector except 1 in the jth element. That is, we keep

the weights of the previously chosen coordinates intact and only optimize over

the new variable. Therefore, for each j we need to solve an optimization problem

over a single variable, which is a much easier task than optimizing over t.

An even simpler approach is to upper bound R(w) using a “simple” function

and then choose the feature which leads to the largest decrease in this upper

bound. For example, if R is a β-smooth function (see Equation (12.5) in Chap-

ter 12), then

R(w + ηej) ≤ R(w) + η
∂R(w)

∂wj
+ βη2/2.

Minimizing the right-hand side over η yields η = −∂R(w)
∂wj

· 1
β and plugging this

value into the above yields

R(w + ηej) ≤ R(w)− 1

2β

(
∂R(w)

∂wj

)2

.

This value is minimized if the partial derivative of R(w) with respect to wj is

maximal. We can therefore choose jt to be the index of the largest coordinate of

the gradient of R(w) at w.

Remark 25.3 (AdaBoost as a Forward Greedy Selection Procedure) It is pos-

sible to interpret the AdaBoost algorithm from Chapter 10 as a forward greedy

25.1 Feature Selection 363

selection procedure with respect to the function

R(w) = log

 m∑
i=1

exp

−yi d∑
j=1

wjhj(xi)

 . (25.3)

See Exercise 3.

Backward Elimination
Another popular greedy selection approach is backward elimination. Here, we

start with the full set of features, and then we gradually remove one feature at a

time from the set of features. Given that our current set of selected features is I,

we go over all i ∈ I, and apply the learning algorithm on the set of features I\{i}.
Each such application yields a different predictor, and we choose to remove the

feature i for which the predictor obtained from I \ {i} has the smallest risk (on

the training set or on a validation set).

Naturally, there are many possible variants of the backward elimination idea.

It is also possible to combine forward and backward greedy steps.

25.1.3 Sparsity-Inducing Norms

The problem of minimizing the empirical risk subject to a budget of k features

can be written as

min
w

LS(w) s.t. ‖w‖0 ≤ k,

where1

‖w‖0 = |{i : wi 6= 0}|.

In other words, we want w to be sparse, which implies that we only need to

measure the features corresponding to nonzero elements of w.

Solving this optimization problem is computationally hard (Natarajan 1995,

Davis, Mallat & Avellaneda 1997). A possible relaxation is to replace the non-

convex function ‖w‖0 with the `1 norm, ‖w‖1 =
∑d
i=1 |wi|, and to solve the

problem

min
w

LS(w) s.t. ‖w‖1 ≤ k1, (25.4)

where k1 is a parameter. Since the `1 norm is a convex function, this problem

can be solved efficiently as long as the loss function is convex. A related problem

is minimizing the sum of LS(w) plus an `1 norm regularization term,

min
w

(LS(w) + λ‖w‖1) , (25.5)

where λ is a regularization parameter. Since for any k1 there exists a λ such that

1 The function ‖ · ‖0 is often referred to as the `0 norm. Despite the use of the “norm”

notation, ‖ · ‖0 is not really a norm; for example, it does not satisfy the positive
homogeneity property of norms, ‖aw‖0 6= |a| ‖w‖0.

364 Feature Selection and Generation

Equation (25.4) and Equation (25.5) lead to the same solution, the two problems

are in some sense equivalent.

The `1 regularization often induces sparse solutions. To illustrate this, let us

start with the simple optimization problem

min
w∈R

(
1

2
w2 − xw + λ|w|

)
. (25.6)

It is easy to verify (see Exercise 2) that the solution to this problem is the “soft

thresholding” operator

w = sign(x) [|x| − λ]+ , (25.7)

where [a]+
def
= max{a, 0}. That is, as long as the absolute value of x is smaller

than λ, the optimal solution will be zero.

Next, consider a one dimensional regression problem with respect to the squared

loss:

argmin
w∈Rm

(
1

2m

m∑
i=1

(xiw − yi)2 + λ|w|

)
.

We can rewrite the problem as

argmin
w∈Rm

(
1

2

(
1
m

∑
i

x2
i

)
w2 −

(
1
m

m∑
i=1

xiyi

)
w + λ|w|

)
.

For simplicity let us assume that 1
m

∑
i x

2
i = 1, and denote 〈x,y〉 =

∑m
i=1 xiyi;

then the optimal solution is

w = sign(〈x,y〉) [|〈x,y〉|/m− λ]+ .

That is, the solution will be zero unless the correlation between the feature x

and the labels vector y is larger than λ.

Remark 25.4 Unlike the `1 norm, the `2 norm does not induce sparse solutions.

Indeed, consider the problem above with an `2 regularization, namely,

argmin
w∈Rm

(
1

2m

m∑
i=1

(xiw − yi)2 + λw2

)
.

Then, the optimal solution is

w =
〈x,y〉/m
‖x‖2/m+ 2λ

.

This solution will be nonzero even if the correlation between x and y is very small.

In contrast, as we have shown before, when using `1 regularization, w will be

nonzero only if the correlation between x and y is larger than the regularization

parameter λ.

25.2 Feature Manipulation and Normalization 365

Adding `1 regularization to a linear regression problem with the squared loss

yields the LASSO algorithm, defined as

argmin
w

(
1

2m
‖Xw − y‖2 + λ‖w‖1

)
. (25.8)

Under some assumptions on the distribution and the regularization parameter

λ, the LASSO will find sparse solutions (see, for example, (Zhao & Yu 2006)

and the references therein). Another advantage of the `1 norm is that a vector

with low `1 norm can be “sparsified” (see, for example, (Shalev-Shwartz, Zhang

& Srebro 2010) and the references therein).

25.2 Feature Manipulation and Normalization

Feature manipulations or normalization include simple transformations that we

apply on each of our original features. Such transformations may decrease the

approximation or estimation errors of our hypothesis class or can yield a faster

algorithm. Similarly to the problem of feature selection, here again there are no

absolute “good” and “bad” transformations, but rather each transformation that

we apply should be related to the learning algorithm we are going to apply on

the resulting feature vector as well as to our prior assumptions on the problem.

To motivate normalization, consider a linear regression problem with the

squared loss. Let X ∈ Rm,d be a matrix whose rows are the instance vectors

and let y ∈ Rm be a vector of target values. Recall that ridge regression returns

the vector

argmin
w

[
1

m
‖Xw − y‖2 + λ‖w‖2

]
= (2λmI +X>X)−1X>y.

Suppose that d = 2 and the underlying data distribution is as follows. First we

sample y uniformly at random from {±1}. Then, we set x1 to be y+0.5α, where

α is sampled uniformly at random from {±1}, and we set x2 to be 0.0001y. Note

that the optimal weight vector is w? = [0; 10000], and LD(w?) = 0. However,

the objective of ridge regression at w? is λ108. In contrast, the objective of ridge

regression at w = [1; 0] is likely to be close to 0.25 + λ. It follows that whenever

λ > 0.25
108−1 ≈ 0.25 × 10−8, the objective of ridge regression is smaller at the

suboptimal solution w = [1; 0]. Since λ typically should be at least 1/m (see

the analysis in Chapter 13), it follows that in the aforementioned example, if the

number of examples is smaller than 108 then we are likely to output a suboptimal

solution.

The crux of the preceding example is that the two features have completely

different scales. Feature normalization can overcome this problem. There are

many ways to perform feature normalization, and one of the simplest approaches

is simply to make sure that each feature receives values between −1 and 1. In

the preceding example, if we divide each feature by the maximal value it attains

366 Feature Selection and Generation

we will obtain that x1 = y+0.5α
1.5 and x2 = y. Then, for λ ≤ 10−3 the solution of

ridge regression is quite close to w?.

Moreover, the generalization bounds we have derived in Chapter 13 for reg-

ularized loss minimization depend on the norm of the optimal vector w? and

on the maximal norm of the instance vectors.2 Therefore, in the aforementioned

example, before we normalize the features we have that ‖w?‖2 = 108, while af-

ter we normalize the features we have that ‖w?‖2 = 1. The maximal norm of

the instance vector remains roughly the same; hence the normalization greatly

improves the estimation error.

Feature normalization can also improve the runtime of the learning algorithm.

For example, in Section 14.5.3 we have shown how to use the Stochastic Gradient

Descent (SGD) optimization algorithm for solving the regularized loss minimiza-

tion problem. The number of iterations required by SGD to converge also depends

on the norm of w? and on the maximal norm of ‖x‖. Therefore, as before, using

normalization can greatly decrease the runtime of SGD.

Next, we demonstrate in the following how a simple transformation on features,

such as clipping, can sometime decrease the approximation error of our hypoth-

esis class. Consider again linear regression with the squared loss. Let a > 1 be

a large number, suppose that the target y is chosen uniformly at random from

{±1}, and then the single feature x is set to be y with probability (1 − 1/a)

and set to be ay with probability 1/a. That is, most of the time our feature is

bounded but with a very small probability it gets a very high value. Then, for

any w, the expected squared loss of w is

LD(w) = E
1

2
(wx− y)2

=

(
1− 1

a

)
1

2
(wy − y)2 +

1

a

1

2
(awy − y)2.

Solving for w we obtain that w? = 2a−1
a2+a−1 , which goes to zero as a goes to infin-

ity. Therefore, the objective at w? goes to 0.5 as a goes to infinity. For example,

for a = 100 we will obtain LD(w?) ≥ 0.48. Next, suppose we apply a “clipping”

transformation; that is, we use the transformation x 7→ sign(x) min{1, |x|}. Then,

following this transformation, w? becomes 1 and LD(w?) = 0. This simple ex-

ample shows that a simple transformation can have a significant influence on the

approximation error.

Of course, it is not hard to think of examples in which the same feature trans-

formation actually hurts performance and increases the approximation error.

This is not surprising, as we have already argued that feature transformations

2 More precisely, the bounds we derived in Chapter 13 for regularized loss minimization
depend on ‖w?‖2 and on either the Lipschitzness or the smoothness of the loss function.

For linear predictors and loss functions of the form `(w, (x, y)) = φ(〈w,x〉, y), where φ is

convex and either 1-Lipschitz or 1-smooth with respect to its first argument, we have that
` is either ‖x‖-Lipschitz or ‖x‖2-smooth. For example, for the squared loss,
φ(a, y) = 1

2
(a− y)2, and `(w, (x, y)) = 1

2
(〈w,x〉 − y)2 is ‖x‖2-smooth with respect to its

first argument.

25.2 Feature Manipulation and Normalization 367

should rely on our prior assumptions on the problem. In the aforementioned ex-

ample, a prior assumption that may lead us to use the “clipping” transformation

is that features that get values larger than a predefined threshold value give us no

additional useful information, and therefore we can clip them to the predefined

threshold.

25.2.1 Examples of Feature Transformations

We now list several common techniques for feature transformations. Usually, it

is helpful to combine some of these transformations (e.g., centering + scaling).

In the following, we denote by f = (f1, . . . , fm) ∈ Rm the value of the feature f

over the m training examples. Also, we denote by f̄ = 1
m

∑m
i=1 fi the empirical

mean of the feature over all examples.

Centering:
This transformation makes the feature have zero mean, by setting fi ← fi − f̄ .

Unit Range:
This transformation makes the range of each feature be [0, 1]. Formally, let

fmax = maxi fi and fmin = mini fi. Then, we set fi ← fi−fmin

fmax−fmin
. Similarly,

we can make the range of each feature be [−1, 1] by the transformation fi ←
2 fi−fmin

fmax−fmin
− 1. Of course, it is easy to make the range [0, b] or [−b, b], where b is

a user-specified parameter.

Standardization:
This transformation makes all features have a zero mean and unit variance.

Formally, let ν = 1
m

∑m
i=1(fi − f̄)2 be the empirical variance of the feature.

Then, we set fi ← fi−f̄√
ν

.

Clipping:
This transformation clips high or low values of the feature. For example, fi ←
sign(fi) max{b, |fi|}, where b is a user-specified parameter.

Sigmoidal Transformation:
As its name indicates, this transformation applies a sigmoid function on the

feature. For example, fi ← 1
1+exp(b fi)

, where b is a user-specified parameter.

This transformation can be thought of as a “soft” version of clipping: It has a

small effect on values close to zero and behaves similarly to clipping on values

far away from zero.

368 Feature Selection and Generation

Logarithmic Transformation:
The transformation is fi ← log(b+fi), where b is a user-specified parameter. This

is widely used when the feature is a “counting” feature. For example, suppose

that the feature represents the number of appearances of a certain word in a

text document. Then, the difference between zero occurrences of the word and

a single occurrence is much more important than the difference between 1000

occurrences and 1001 occurrences.

Remark 25.5 In the aforementioned transformations, each feature is trans-

formed on the basis of the values it obtains on the training set, independently

of other features’ values. In some situations we would like to set the parameter

of the transformation on the basis of other features as well. A notable example

is a transformation in which one applies a scaling to the features so that the

empirical average of some norm of the instances becomes 1.

25.3 Feature Learning

So far we have discussed feature selection and manipulations. In these cases, we

start with a predefined vector space Rd, representing our features. Then, we select

a subset of features (feature selection) or transform individual features (feature

transformation). In this section we describe feature learning, in which we start

with some instance space, X , and would like to learn a function, ψ : X → Rd,
which maps instances in X into a representation as d-dimensional feature vectors.

The idea of feature learning is to automate the process of finding a good rep-

resentation of the input space. As mentioned before, the No-Free-Lunch theorem

tells us that we must incorporate some prior knowledge on the data distribution

in order to build a good feature representation. In this section we present a few

feature learning approaches and demonstrate conditions on the underlying data

distribution in which these methods can be useful.

Throughout the book we have already seen several useful feature construc-

tions. For example, in the context of polynomial regression, we have mapped the

original instances into the vector space of all their monomials (see Section 9.2.2

in Chapter 9). After performing this mapping, we trained a linear predictor on

top of the constructed features. Automation of this process would be to learn

a transformation ψ : X → Rd, such that the composition of the class of linear

predictors on top of ψ yields a good hypothesis class for the task at hand.

In the following we describe a technique of feature construction called dictio-

nary learning.

25.3.1 Dictionary Learning Using Auto-Encoders

The motivation of dictionary learning stems from a commonly used represen-

tation of documents as a “bag-of-words”: Given a dictionary of words D =

{w1, . . . , wk}, where each wi is a string representing a word in the dictionary,

25.3 Feature Learning 369

and given a document, (p1, . . . , pd), where each pi is a word in the document,

we represent the document as a vector x ∈ {0, 1}k, where xi is 1 if wi = pj for

some j ∈ [d], and xi = 0 otherwise. It was empirically observed in many text

processing tasks that linear predictors are quite powerful when applied on this

representation. Intuitively, we can think of each word as a feature that measures

some aspect of the document. Given labeled examples (e.g., topics of the doc-

uments), a learning algorithm searches for a linear predictor that weights these

features so that a right combination of appearances of words is indicative of the

label.

While in text processing there is a natural meaning to words and to the dic-

tionary, in other applications we do not have such an intuitive representation

of an instance. For example, consider the computer vision application of object

recognition. Here, the instance is an image and the goal is to recognize which

object appears in the image. Applying a linear predictor on the pixel-based rep-

resentation of the image does not yield a good classifier. What we would like

to have is a mapping ψ that would take the pixel-based representation of the

image and would output a bag of “visual words,” representing the content of the

image. For example, a “visual word” can be “there is an eye in the image.” If

we had such representation, we could have applied a linear predictor on top of

this representation to train a classifier for, say, face recognition. Our question is,

therefore, how can we learn a dictionary of “visual words” such that a bag-of-

words representation of an image would be helpful for predicting which object

appears in the image?

A first naive approach for dictionary learning relies on a clustering algorithm

(see Chapter 22). Suppose that we learn a function c : X → {1, . . . , k}, where

c(x) is the cluster to which x belongs. Then, we can think of the clusters as

“words,” and of instances as “documents,” where a document x is mapped to

the vector ψ(x) ∈ {0, 1}k, where ψ(x)i is 1 if and only if x belongs to the ith

cluster. Now, it is straightforward to see that applying a linear predictor on ψ(x)

is equivalent to assigning the same target value to all instances that belong to

the same cluster. Furthermore, if the clustering is based on distances from a

class center (e.g., k-means), then a linear predictor on ψ(x) yields a piece-wise

constant predictor on x.

Both the k-means and PCA approaches can be regarded as special cases of a

more general approach for dictionary learning which is called auto-encoders. In an

auto-encoder we learn a pair of functions: an “encoder” function, ψ : Rd → Rk,

and a “decoder” function, φ : Rk → Rd. The goal of the learning process is to

find a pair of functions such that the reconstruction error,
∑
i ‖xi − φ(ψ(xi))‖2,

is small. Of course, we can trivially set k = d and both ψ, φ to be the identity

mapping, which yields a perfect reconstruction. We therefore must restrict ψ and

φ in some way. In PCA, we constrain k < d and further restrict ψ and φ to be

linear functions. In k-means, k is not restricted to be smaller than d, but now

ψ and φ rely on k centroids, µ1, . . . ,µk, and ψ(x) returns an indicator vector

370 Feature Selection and Generation

in {0, 1}k that indicates the closest centroid to x, while φ takes as input an

indicator vector and returns the centroid representing this vector.

An important property of the k-means construction, which is key in allowing

k to be larger than d, is that ψ maps instances into sparse vectors. In fact, in

k-means only a single coordinate of ψ(x) is nonzero. An immediate extension of

the k-means construction is therefore to restrict the range of ψ to be vectors with

at most s nonzero elements, where s is a small integer. In particular, let ψ and φ

be functions that depend on µ1, . . . ,µk. The function ψ maps an instance vector

x to a vector ψ(x) ∈ Rk, where ψ(x) should have at most s nonzero elements.

The function φ(v) is defined to be
∑k
i=1 viµi. As before, our goal is to have a

small reconstruction error, and therefore we can define

ψ(x) = argmin
v
‖x− φ(v)‖2 s.t. ‖v‖0 ≤ s,

where ‖v‖0 = |{j : vj 6= 0}|. Note that when s = 1 and we further restrict ‖v‖1 =

1 then we obtain the k-means encoding function; that is, ψ(x) is the indicator

vector of the centroid closest to x. For larger values of s, the optimization problem

in the preceding definition of ψ becomes computationally difficult. Therefore, in

practice, we sometime use `1 regularization instead of the sparsity constraint and

define ψ to be

ψ(x) = argmin
v

[
‖x− φ(v)‖2 + λ‖v‖1

]
,

where λ > 0 is a regularization parameter. Anyway, the dictionary learning

problem is now to find the vectors µ1, . . . ,µk such that the reconstruction er-

ror,
∑m
i=1 ‖xi − φ(ψ(x))‖2, is as small as possible. Even if ψ is defined using

the `1 regularization, this is still a computationally hard problem (similar to

the k-means problem). However, several heuristic search algorithms may give

reasonably good solutions. These algorithms are beyond the scope of this book.

25.4 Summary

Many machine learning algorithms take the feature representation of instances

for granted. Yet the choice of representation requires careful attention. We dis-

cussed approaches for feature selection, introducing filters, greedy selection al-

gorithms, and sparsity-inducing norms. Next we presented several examples for

feature transformations and demonstrated their usefulness. Last, we discussed

feature learning, and in particular dictionary learning. We have shown that fea-

ture selection, manipulation, and learning all depend on some prior knowledge

on the data.

25.5 Bibliographic Remarks 371

25.5 Bibliographic Remarks

Guyon & Elisseeff (2003) surveyed several feature selection procedures, including

many types of filters.

Forward greedy selection procedures for minimizing a convex objective sub-

ject to a polyhedron constraint date back to the Frank-Wolfe algorithm (Frank

& Wolfe 1956). The relation to boosting has been studied by several authors,

including, (Warmuth, Liao & Ratsch 2006, Warmuth, Glocer & Vishwanathan

2008, Shalev-Shwartz & Singer 2008). Matching pursuit has been studied in the

signal processing community (Mallat & Zhang 1993). Several papers analyzed

greedy selection methods under various conditions. See, for example, Shalev-

Shwartz, Zhang & Srebro (2010) and the references therein.

The use of the `1-norm as a surrogate for sparsity has a long history (e.g. Tib-

shirani (1996) and the references therein), and much work has been done on un-

derstanding the relationship between the `1-norm and sparsity. It is also closely

related to compressed sensing (see Chapter 23). The ability to sparsify low `1
norm predictors dates back to Maurey (Pisier 1980-1981). In Section 26.4 we

also show that low `1 norm can be used to bound the estimation error of our

predictor.

Feature learning and dictionary learning have been extensively studied recently

in the context of deep neural networks. See, for example, (Lecun & Bengio 1995,

Hinton et al. 2006, Ranzato et al. 2007, Collobert & Weston 2008, Lee et al.

2009, Le et al. 2012, Bengio 2009) and the references therein.

25.6 Exercises

1. Prove the equality given in Equation (25.1). Hint: Let a∗, b∗ be minimizers of

the left-hand side. Find a, b such that the objective value of the right-hand

side is smaller than that of the left-hand side. Do the same for the other

direction.

2. Show that Equation (25.7) is the solution of Equation (25.6).

3. AdaBoost as a Forward Greedy Selection Algorithm: Recall the Ad-

aBoost algorithm from Chapter 10. In this section we give another interpre-

tation of AdaBoost as a forward greedy selection algorithm.

• Given a set of m instances x1, . . . ,xm, and a hypothesis class H of finite

VC dimension, show that there exist d and h1, . . . , hd such that for every

h ∈ H there exists i ∈ [d] with hi(xj) = h(xj) for every j ∈ [m].

• Let R(w) be as defined in Equation (25.3). Given some w, define fw to be

the function

fw(·) =

d∑
i=1

wihi(·).

372 Feature Selection and Generation

Let D be the distribution over [m] defined by

Di =
exp(−yifw(xi))

Z
,

where Z is a normalization factor that ensures that D is a probability

vector. Show that

∂R(w)

wj
= −

m∑
i=1

Diyihj(xi).

Furthermore, denoting εj =
∑m
i=1Di1[hj(xi) 6=yi], show that

∂R(w)

wj
= 2εj − 1.

Conclude that if εj ≤ 1/2− γ then
∣∣∣∂R(w)

wj

∣∣∣ ≥ γ/2.

• Show that the update of AdaBoost guarantees R(w(t+1)) − R(w(t)) ≤
log(

√
1− 4γ2). Hint : Use the proof of Theorem 10.2.

Part IV

Advanced Theory

26 Rademacher Complexities

In Chapter 4 we have shown that uniform convergence is a sufficient condition

for learnability. In this chapter we study the Rademacher complexity, which

measures the rate of uniform convergence. We will provide generalization bounds

based on this measure.

26.1 The Rademacher Complexity

Recall the definition of an ε-representative sample from Chapter 4, repeated here

for convenience.

definition 26.1 (ε-Representative Sample) A training set S is called ε-representative

(w.r.t. domain Z, hypothesis class H, loss function `, and distribution D) if

sup
h∈H
|LD(h)− LS(h)| ≤ ε.

We have shown that if S is an ε/2 representative sample then the ERM rule

is ε-consistent, namely, LD(ERMH(S)) ≤ minh∈H LD(h) + ε.

To simplify our notation, let us denote

F def
= ` ◦ H def

= {z 7→ `(h, z) : h ∈ H},

and given f ∈ F , we define

LD(f) = E
z∼D

[f(z)] , LS(f) =
1

m

m∑
i=1

f(zi).

We define the representativeness of S with respect to F as the largest gap be-

tween the true error of a function f and its empirical error, namely,

RepD(F , S)
def
= sup

f∈F

(
LD(f)− LS(f)

)
. (26.1)

Now, suppose we would like to estimate the representativeness of S using the

sample S only. One simple idea is to split S into two disjoint sets, S = S1 ∪ S2;

refer to S1 as a validation set and to S2 as a training set. We can then estimate

the representativeness of S by

sup
f∈F

(
LS1(f)− LS2(f)

)
. (26.2)

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

376 Rademacher Complexities

This can be written more compactly by defining σ = (σ1, . . . , σm) ∈ {±1}m to

be a vector such that S1 = {zi : σi = 1} and S2 = {zi : σi = −1}. Then, if we

further assume that |S1| = |S2| then Equation (26.2) can be rewritten as

2

m
sup
f∈F

m∑
i=1

σif(zi). (26.3)

The Rademacher complexity measure captures this idea by considering the ex-

pectation of the above with respect to a random choice of σ. Formally, let F ◦S
be the set of all possible evaluations a function f ∈ F can achieve on a sample

S, namely,

F ◦ S = {(f(z1), . . . , f(zm)) : f ∈ F}.

Let the variables in σ be distributed i.i.d. according to P[σi = 1] = P[σi = −1] =
1
2 . Then, the Rademacher complexity of F with respect to S is defined as follows:

R(F ◦ S)
def
=

1

m
E

σ∼{±1}m

[
sup
f∈F

m∑
i=1

σif(zi)

]
. (26.4)

More generally, given a set of vectors, A ⊂ Rm, we define

R(A)
def
=

1

m
E
σ

[
sup
a∈A

m∑
i=1

σiai

]
. (26.5)

The following lemma bounds the expected value of the representativeness of

S by twice the expected Rademacher complexity.

lemma 26.2

E
S∼Dm

[RepD(F , S)] ≤ 2 E
S∼Dm

R(F ◦ S).

Proof Let S′ = {z′1, . . . , z′m} be another i.i.d. sample. Clearly, for all f ∈ F ,

LD(f) = ES′ [LS′(f)]. Therefore, for every f ∈ F we have

LD(f)− LS(f) = E
S′

[LS′(f)]− LS(f) = E
S′

[LS′(f)− LS(f)].

Taking supremum over f ∈ F of both sides, and using the fact that the supremum

of expectation is smaller than expectation of the supremum we obtain

sup
f∈F

(
LD(f)− LS(f)

)
= sup

f∈F
E
S′

[LS′(f)− LS(f)]

≤ E
S′

[
sup
f∈F

(
LS′(f)− LS(f)

)]
.

Taking expectation over S on both sides we obtain

E
S

[
sup
f∈F

(
LD(f)− LS(f)

)]
≤ E

S,S′

[
sup
f∈F

(
LS′(f)− LS(f)

)]

=
1

m
E
S,S′

[
sup
f∈F

m∑
i=1

(f(z′i)− f(zi))

]
.

(26.6)

26.1 The Rademacher Complexity 377

Next, we note that for each j, zj and z′j are i.i.d. variables. Therefore, we can

replace them without affecting the expectation:

E
S,S′

 sup
f∈F

(f(z′j)− f(zj)) +
∑
i6=j

(f(z′i)− f(zi))

 =

E
S,S′

 sup
f∈F

(f(zj)− f(z′j)) +
∑
i6=j

(f(z′i)− f(zi))

 .
(26.7)

Let σj be a random variable such that P[σj = 1] = P[σj = −1] = 1/2. From

Equation (26.7) we obtain that

E
S,S′,σj

 sup
f∈F

σj(f(z′j)− f(zj)) +
∑
i 6=j

(f(z′i)− f(zi))

=

1

2
(l.h.s. of Equation (26.7)) +

1

2
(r.h.s. of Equation (26.7))

= E
S,S′

 sup
f∈F

(f(z′j)− f(zj)) +
∑
i 6=j

(f(z′i)− f(zi))

 .
(26.8)

Repeating this for all j we obtain that

E
S,S′

[
sup
f∈F

m∑
i=1

(f(z′i)− f(zi))

]
= E
S,S′,σ

[
sup
f∈F

m∑
i=1

σi(f(z′i)− f(zi))

]
. (26.9)

Finally,

sup
f∈F

∑
i

σi(f(z′i)− f(zi)) ≤ sup
f∈F

∑
i

σif(z′i) + sup
f∈F

∑
i

−σif(zi)

and since the probability of σ is the same as the probability of −σ, the right-hand

side of Equation (26.9) can be bounded by

E
S,S′,σ

[
sup
f∈F

∑
i

σif(z′i) + sup
f∈F

∑
i

σif(zi)

]
= m E

S′
[R(F ◦ S′)] +mE

S
[R(F ◦ S)] = 2mE

S
[R(F ◦ S)].

The lemma immediately yields that, in expectation, the ERM rule finds a

hypothesis which is close to the optimal hypothesis in H.

theorem 26.3 We have

E
S∼Dm

[LD(ERMH(S))− LS(ERMH(S))] ≤ 2 E
S∼Dm

R(` ◦ H ◦ S).

Furthermore, for any h? ∈ H

E
S∼Dm

[LD(ERMH(S))− LD(h?)] ≤ 2 E
S∼Dm

R(` ◦ H ◦ S).

378 Rademacher Complexities

Furthermore, if h? = argminh LD(h) then for each δ ∈ (0, 1) with probability of

at least 1− δ over the choice of S we have

LD(ERMH(S))− LD(h?) ≤ 2 ES′∼Dm R(` ◦ H ◦ S′)
δ

.

Proof The first inequality follows directly from Lemma 26.2. The second in-

equality follows because for any fixed h?,

LD(h?) = E
S

[LS(h?)] ≥ E
S

[LS(ERMH(S))].

The third inequality follows from the previous inequality by relying on Markov’s

inequality (note that the random variable LD(ERMH(S))−LD(h?) is nonnega-

tive).

Next, we derive bounds similar to the bounds in Theorem 26.3 with a better

dependence on the confidence parameter δ. To do so, we first introduce the

following bounded differences concentration inequality.

lemma 26.4 (McDiarmid’s Inequality) Let V be some set and let f : V m → R
be a function of m variables such that for some c > 0, for all i ∈ [m] and for all

x1, . . . , xm, x
′
i ∈ V we have

|f(x1, . . . , xm)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ c.

Let X1, . . . , Xm be m independent random variables taking values in V . Then,

with probability of at least 1− δ we have

|f(X1, . . . , Xm)− E[f(X1, . . . , Xm)]| ≤ c
√

ln
(

2
δ

)
m/2.

On the basis of the McDiarmid inequality we can derive generalization bounds

with a better dependence on the confidence parameter.

theorem 26.5 Assume that for all z and h ∈ H we have that |`(h, z)| ≤ c.

Then,

1. With probability of at least 1− δ, for all h ∈ H,

LD(h)− LS(h) ≤ 2 E
S′∼Dm

R(` ◦ H ◦ S′) + c

√
2 ln(2/δ)

m
.

In particular, this holds for h = ERMH(S).

2. With probability of at least 1− δ, for all h ∈ H,

LD(h)− LS(h) ≤ 2R(` ◦ H ◦ S) + 4 c

√
2 ln(4/δ)

m
.

In particular, this holds for h = ERMH(S).

3. For any h?, with probability of at least 1− δ,

LD(ERMH(S))− LD(h?) ≤ 2R(` ◦ H ◦ S) + 5 c

√
2 ln (8/δ)

m
.

26.1 The Rademacher Complexity 379

Proof First note that the random variable RepD(F , S) = suph∈H (LD(h)− LS(h))

satisfies the bounded differences condition of Lemma 26.4 with a constant 2c/m.

Combining the bounds in Lemma 26.4 with Lemma 26.2 we obtain that with

probability of at least 1− δ,

RepD(F , S) ≤ ERepD(F , S) + c

√
2 ln(2/δ)

m
≤ 2 E

S′
R(` ◦H ◦ S′) + c

√
2 ln(2/δ)

m
.

The first inequality of the theorem follows from the definition of RepD(F , S).

For the second inequality we note that the random variable R(` ◦ H ◦ S) also

satisfies the bounded differences condition of Lemma 26.4 with a constant 2c/m.

Therefore, the second inequality follows from the first inequality, Lemma 26.4,

and the union bound. Finally, for the last inequality, denote hS = ERMH(S)

and note that

LD(hS)− LD(h?)

= LD(hS)− LS(hS) + LS(hS)− LS(h?) + LS(h?)− LD(h?)

≤ (LD(hS)− LS(hS)) + (LS(h?)− LD(h?)) . (26.10)

The first summand on the right-hand side is bounded by the second inequality of

the theorem. For the second summand, we use the fact that h? does not depend

on S; hence by using Hoeffding’s inequality we obtain that with probaility of at

least 1− δ/2,

LS(h?)− LD(h?) ≤ c

√
ln(4/δ)

2m
. (26.11)

Combining this with the union bound we conclude our proof.

The preceding theorem tells us that if the quantity R(`◦H◦S) is small then it

is possible to learn the class H using the ERM rule. It is important to emphasize

that the last two bounds given in the theorem depend on the specific training

set S. That is, we use S both for learning a hypothesis from H as well as for

estimating the quality of it. This type of bound is called a data-dependent bound.

26.1.1 Rademacher Calculus

Let us now discuss some properties of the Rademacher complexity measure.

These properties will help us in deriving some simple bounds on R(` ◦H◦S) for

specific cases of interest.

The following lemma is immediate from the definition.

lemma 26.6 For any A ⊂ Rm, scalar c ∈ R, and vector a0 ∈ Rm, we have

R({ca + a0 : a ∈ A}) ≤ |c|R(A).

The following lemma tells us that the convex hull of A has the same complexity

as A.

380 Rademacher Complexities

lemma 26.7 Let A be a subset of Rm and let A′ = {
∑N
j=1 αja

(j) : N ∈
N,∀j,a(j) ∈ A,αj ≥ 0, ‖α‖1 = 1}. Then, R(A′) = R(A).

Proof The main idea follows from the fact that for any vector v we have

sup
α≥0:‖α‖1=1

N∑
j=1

αjvj = max
j
vj .

Therefore,

mR(A′) = E
σ

sup
α≥0:‖α‖1=1

sup
a(1),...,a(N)

m∑
i=1

σi

N∑
j=1

αja
(j)
i

= E
σ

sup
α≥0:‖α‖1=1

N∑
j=1

αj sup
a(j)

m∑
i=1

σia
(j)
i

= E
σ

sup
a∈A

m∑
i=1

σiai

= mR(A),

and we conclude our proof.

The next lemma, due to Massart, states that the Rademacher complexity of

a finite set grows logarithmically with the size of the set.

lemma 26.8 (Massart lemma) Let A = {a1, . . . ,aN} be a finite set of vectors

in Rm. Define ā = 1
N

∑N
i=1 ai. Then,

R(A) ≤ max
a∈A
‖a− ā‖

√
2 log(N)

m
.

Proof Based on Lemma 26.6, we can assume without loss of generality that

ā = 0. Let λ > 0 and let A′ = {λa1, . . . , λaN}. We upper bound the Rademacher

complexity as follows:

mR(A′) = E
σ

[
max
a∈A′
〈σ,a〉

]
= E

σ

[
log

(
max
a∈A′

e〈σ,a〉
)]

≤ E
σ

[
log

(∑
a∈A′

e〈σ,a〉

)]

≤ log

(
E
σ

[∑
a∈A′

e〈σ,a〉

])
// Jensen’s inequality

= log

(∑
a∈A′

m∏
i=1

E
σi

[eσiai]

)
,

where the last equality occurs because the Rademacher variables are indepen-

dent. Next, using Lemma A.6 we have that for all ai ∈ R,

E
σi
eσiai =

exp(ai) + exp(−ai)
2

≤ exp(a2
i /2),

26.1 The Rademacher Complexity 381

and therefore

mR(A′) ≤ log

(∑
a∈A′

m∏
i=1

exp

(
a2
i

2

))
= log

(∑
a∈A′

exp
(
‖a‖2/2

))

≤ log

(
|A′|max

a∈A′
exp

(
‖a‖2/2

))
= log(|A′|) + max

a∈A′
(‖a‖2/2).

Since R(A) = 1
λR(A′) we obtain from the equation that

R(A) ≤ log(|A|) + λ2 maxa∈A(‖a‖2/2)

λm
.

Setting λ =
√

2 log(|A|)/maxa∈A ‖a‖2 and rearranging terms we conclude our

proof.

The following lemma shows that composing A with a Lipschitz function does

not blow up the Rademacher complexity. The proof is due to Kakade and Tewari.

lemma 26.9 (Contraction lemma) For each i ∈ [m], let φi : R → R be a ρ-

Lipschitz function, namely for all α, β ∈ R we have |φi(α)− φi(β)| ≤ ρ |α − β|.
For a ∈ Rm let φ(a) denote the vector (φ1(a1), . . . , φm(ym)). Let φ◦A = {φ(a) :

a ∈ A}. Then,

R(φ ◦A) ≤ ρR(A).

Proof For simplicity, we prove the lemma for the case ρ = 1. The case ρ 6=
1 will follow by defining φ′ = 1

ρφ and then using Lemma 26.6. Let Ai =

{(a1, . . . , ai−1, φi(ai), ai+1, . . . , am) : a ∈ A}. Clearly, it suffices to prove that

for any set A and all i we have R(Ai) ≤ R(A). Without loss of generality we will

prove the latter claim for i = 1 and to simplify notation we omit the subscript

from φ1. We have

mR(A1) = E
σ

[
sup
a∈A1

m∑
i=1

σiai

]

= E
σ

[
sup
a∈A

σ1φ(a1) +

m∑
i=2

σiai

]

=
1

2
E

σ2,...,σm

[
sup
a∈A

(
φ(a1) +

m∑
i=2

σiai

)
+ sup

a∈A

(
−φ(a1) +

m∑
i=2

σiai

)]

=
1

2
E

σ2,...,σm

[
sup

a,a′∈A

(
φ(a1)− φ(a′1) +

m∑
i=2

σiai +

m∑
i=2

σia
′
i

)]

≤ 1

2
E

σ2,...,σm

[
sup

a,a′∈A

(
|a1 − a′1|+

m∑
i=2

σiai +

m∑
i=2

σia
′
i

)]
, (26.12)

where in the last inequality we used the assumption that φ is Lipschitz. Next,

we note that the absolute value on |a1 − a′1| in the preceding expression can

382 Rademacher Complexities

be omitted since both a and a′ are from the same set A and the rest of the

expression in the supremum is not affected by replacing a and a′. Therefore,

mR(A1) ≤ 1

2
E

σ2,...,σm

[
sup

a,a′∈A

(
a1 − a′1 +

m∑
i=2

σiai +

m∑
i=2

σia
′
i

)]
. (26.13)

But, using the same equalities as in Equation (26.12), it is easy to see that the

right-hand side of Equation (26.13) exactly equals mR(A), which concludes our

proof.

26.2 Rademacher Complexity of Linear Classes

In this section we analyze the Rademacher complexity of linear classes. To sim-

plify the derivation we first define the following two classes:

H1 = {x 7→ 〈w,x〉 : ‖w‖1 ≤ 1} , H2 = {x 7→ 〈w,x〉 : ‖w‖2 ≤ 1}. (26.14)

The following lemma bounds the Rademacher complexity of H2. We allow

the xi to be vectors in any Hilbert space (even infinite dimensional), and the

bound does not depend on the dimensionality of the Hilbert space. This property

becomes useful when analyzing kernel methods.

lemma 26.10 Let S = (x1, . . . ,xm) be vectors in a Hilbert space. Define: H2 ◦
S = {(〈w,x1〉, . . . , 〈w,xm〉) : ‖w‖2 ≤ 1}. Then,

R(H2 ◦ S) ≤ maxi ‖xi‖2√
m

.

Proof Using Cauchy-Schwartz inequality we know that for any vectors w,v we

have 〈w,v〉 ≤ ‖w‖ ‖v‖. Therefore,

mR(H2 ◦ S) = E
σ

[
sup

a∈H2◦S

m∑
i=1

σiai

]
(26.15)

= E
σ

[
sup

w:‖w‖≤1

m∑
i=1

σi〈w,xi〉

]

= E
σ

[
sup

w:‖w‖≤1

〈w,
m∑
i=1

σixi〉

]

≤ E
σ

[
‖
m∑
i=1

σixi‖2

]
.

Next, using Jensen’s inequality we have that

E
σ

[∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
2

]
= E

σ

∥∥∥∥∥

m∑
i=1

σixi

∥∥∥∥∥
2

2

1/2
 ≤

E
σ

∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
2

2

1/2

.(26.16)

26.3 Generalization Bounds for SVM 383

Finally, since the variables σ1, . . . , σm are independent we have

E
σ

[
‖
m∑
i=1

σixi‖22

]
= E

σ

∑
i,j

σiσj〈xi,xj〉

=
∑
i 6=j

〈xi,xj〉E
σ

[σiσj] +

m∑
i=1

〈xi,xi〉E
σ

[
σ2
i

]
=

m∑
i=1

‖xi‖22 ≤ m max
i
‖xi‖22.

Combining this with Equation (26.15) and Equation (26.16) we conclude our

proof.

Next we bound the Rademacher complexity of H1 ◦ S.

lemma 26.11 Let S = (x1, . . . ,xm) be vectors in Rn. Then,

R(H1 ◦ S) ≤ max
i
‖xi‖∞

√
2 log(2n)

m
.

Proof Using Holder’s inequality we know that for any vectors w,v we have

〈w,v〉 ≤ ‖w‖1 ‖v‖∞. Therefore,

mR(H1 ◦ S) = E
σ

[
sup

a∈H1◦S

m∑
i=1

σiai

]

= E
σ

[
sup

w:‖w‖1≤1

m∑
i=1

σi〈w,xi〉

]

= E
σ

[
sup

w:‖w‖1≤1

〈w,
m∑
i=1

σixi〉

]

≤ E
σ

[
‖
m∑
i=1

σixi‖∞

]
. (26.17)

For each j ∈ [n], let vj = (x1,j , . . . , xm,j) ∈ Rm. Note that ‖vj‖2 ≤
√
m maxi ‖xi‖∞.

Let V = {v1, . . . ,vn,−v1, . . . ,−vn}. The right-hand side of Equation (26.17) is

mR(V). Using Massart lemma (Lemma 26.8) we have that

R(V) ≤ max
i
‖xi‖∞

√
2 log(2n)/m,

which concludes our proof.

26.3 Generalization Bounds for SVM

In this section we use Rademacher complexity to derive generalization bounds

for generalized linear predictors with Euclidean norm constraint. We will show

how this leads to generalization bounds for hard-SVM and soft-SVM.

384 Rademacher Complexities

We shall consider the following general constraint-based formulation. Let H =

{w : ‖w‖2 ≤ B} be our hypothesis class, and let Z = X × Y be the examples

domain. Assume that the loss function ` : H× Z → R is of the form

`(w, (x, y)) = φ(〈w,x〉, y), (26.18)

where φ : R× Y → R is such that for all y ∈ Y, the scalar function a 7→ φ(a, y)

is ρ-Lipschitz. For example, the hinge-loss function, `(w, (x, y)) = max{0, 1 −
y〈w,x〉}, can be written as in Equation (26.18) using φ(a, y) = max{0, 1 −
ya}, and note that φ is 1-Lipschitz for all y ∈ {±1}. Another example is the

absolute loss function, `(w, (x, y)) = |〈w,x〉 − y|, which can be written as in

Equation (26.18) using φ(a, y) = |a− y|, which is also 1-Lipschitz for all y ∈ R.

The following theorem bounds the generalization error of all predictors in H
using their empirical error.

theorem 26.12 Suppose that D is a distribution over X × Y such that with

probability 1 we have that ‖x‖2 ≤ R. Let H = {w : ‖w‖2 ≤ B} and let

` : H × Z → R be a loss function of the form given in Equation (26.18)

such that for all y ∈ Y, a 7→ φ(a, y) is a ρ-Lipschitz function and such that

maxa∈[−BR,BR] |φ(a, y)| ≤ c. Then, for any δ ∈ (0, 1), with probability of at least

1− δ over the choice of an i.i.d. sample of size m,

∀w ∈ H, LD(w) ≤ LS(w) +
2ρBR√
m

+ c

√
2 ln(2/δ)

m
.

Proof Let F = {(x, y) 7→ φ(〈w,x〉, y) : w ∈ H}. We will show that with

probability 1, R(F ◦ S) ≤ ρBR/
√
m and then the theorem will follow from

Theorem 26.5. Indeed, the set F ◦ S can be written as

F ◦ S = {(φ(〈w,x1〉, y1), . . . , φ(〈w,xm〉, ym)) : w ∈ H},

and the bound onR(F◦S) follows directly by combining Lemma 26.9, Lemma 26.10,

and the assumption that ‖x‖2 ≤ R with probability 1.

We next derive a generalization bound for hard-SVM based on the previous

theorem. For simplicity, we do not allow a bias term and consider the hard-SVM

problem:

argmin
w

‖w‖2 s.t. ∀i, yi〈w,xi〉 ≥ 1 (26.19)

theorem 26.13 Consider a distribution D over X×{±1} such that there exists

some vector w? with P(x,y)∼D[y〈w?,x〉 ≥ 1] = 1 and such that ‖x‖2 ≤ R with

probability 1. Let wS be the output of Equation (26.19). Then, with probability

of at least 1− δ over the choice of S ∼ Dm, we have that

P
(x,y)∼D

[y 6= sign(〈wS ,x〉)] ≤
2R ‖w?‖√

m
+ (1 +R ‖w?‖)

√
2 ln(2/δ)

m
.

26.3 Generalization Bounds for SVM 385

Proof Throughout the proof, let the loss function be the ramp loss (see Sec-

tion 15.2.3). Note that the range of the ramp loss is [0, 1] and that it is a

1-Lipschitz function. Since the ramp loss upper bounds the zero-one loss, we

have that

P
(x,y)∼D

[y 6= sign(〈wS ,x〉)] ≤ LD(wS).

Let B = ‖w?‖2 and consider the set H = {w : ‖w‖2 ≤ B}. By the definition of

hard-SVM and our assumption on the distribution, we have that wS ∈ H with

probability 1 and that LS(wS) = 0. Therefore, using Theorem 26.12 we have

that

LD(wS) ≤ LS(wS) +
2BR√
m

+

√
2 ln(2/δ)

m
.

Remark 26.1 Theorem 26.13 implies that the sample complexity of hard-SVM

grows like R2 ‖w?‖2
ε2 . Using a more delicate analysis and the separability assump-

tion, it is possible to improve the bound to an order of R2 ‖w?‖2
ε .

The bound in the preceding theorem depends on ‖w?‖, which is unknown.

In the following we derive a bound that depends on the norm of the output of

SVM; hence it can be calculated from the training set itself. The proof is similar

to the derivation of bounds for structure risk minimization (SRM).

theorem 26.14 Assume that the conditions of Theorem 26.13 hold. Then,

with probability of at least 1− δ over the choice of S ∼ Dm, we have that

P
(x,y)∼D

[y 6= sign(〈wS ,x〉)] ≤
4R‖wS‖√

m
+

√
ln(4 log2(‖wS‖)

δ)

m
.

Proof For any integer i, let Bi = 2i, Hi = {w : ‖w‖ ≤ Bi}, and let δi = δ
2i2 .

Fix i, then using Theorem 26.12 we have that with probability of at least 1− δi

∀w ∈ Hi, LD(w) ≤ LS(w) +
2BiR√
m

+

√
2 ln(2/δi)

m

Applying the union bound and using
∑∞
i=1 δi ≤ δ we obtain that with probability

of at least 1− δ this holds for all i. Therefore, for all w, if we let i = dlog2(‖w‖)e
then w ∈ Hi, Bi ≤ 2‖w‖, and 2

δi
= (2i)2

δ ≤ (4 log2(‖w‖))2
δ . Therefore,

LD(w) ≤ LS(w) +
2BiR√
m

+

√
2 ln(2/δi)

m

≤ LS(w) +
4‖w‖R√

m
+

√
4(ln(4 log2(‖w‖)) + ln(1/δ))

m
.

In particular, it holds for wS , which concludes our proof.

386 Rademacher Complexities

Remark 26.2 Note that all the bounds we have derived do not depend on the

dimension of w. This property is utilized when learning SVM with kernels, where

the dimension of w can be extremely large.

26.4 Generalization Bounds for Predictors with Low `1 Norm

In the previous section we derived generalization bounds for linear predictors

with an `2-norm constraint. In this section we consider the following general `1-

norm constraint formulation. Let H = {w : ‖w‖1 ≤ B} be our hypothesis class,

and let Z = X × Y be the examples domain. Assume that the loss function,

` : H× Z → R, is of the same form as in Equation (26.18), with φ : R× Y → R
being ρ-Lipschitz w.r.t. its first argument. The following theorem bounds the

generalization error of all predictors in H using their empirical error.

theorem 26.15 Suppose that D is a distribution over X × Y such that with

probability 1 we have that ‖x‖∞ ≤ R. Let H = {w ∈ Rd : ‖w‖1 ≤ B} and

let ` : H × Z → R be a loss function of the form given in Equation (26.18)

such that for all y ∈ Y, a 7→ φ(a, y) is an ρ-Lipschitz function and such that

maxa∈[−BR,BR] |φ(a, y)| ≤ c. Then, for any δ ∈ (0, 1), with probability of at least

1− δ over the choice of an i.i.d. sample of size m,

∀w ∈ H, LD(w) ≤ LS(w) + 2ρBR

√
2 log(2d)

m
+ c

√
2 ln(2/δ)

m
.

Proof The proof is identical to the proof of Theorem 26.12, while relying on

Lemma 26.11 instead of relying on Lemma 26.10.

It is interesting to compare the two bounds given in Theorem 26.12 and The-

orem 26.15. Apart from the extra log(d) factor that appears in Theorem 26.15,

both bounds look similar. However, the parameters B,R have different meanings

in the two bounds. In Theorem 26.12, the parameter B imposes an `2 constraint

on w and the parameter R captures a low `2-norm assumption on the instances.

In contrast, in Theorem 26.15 the parameter B imposes an `1 constraint on w

(which is stronger than an `2 constraint) while the parameter R captures a low

`∞-norm assumption on the instance (which is weaker than a low `2-norm as-

sumption). Therefore, the choice of the constraint should depend on our prior

knowledge of the set of instances and on prior assumptions on good predictors.

26.5 Bibliographic Remarks

The use of Rademacher complexity for bounding the uniform convergence is

due to (Koltchinskii & Panchenko 2000, Bartlett & Mendelson 2001, Bartlett

& Mendelson 2002). For additional reading see, for example, (Bousquet 2002,

Boucheron, Bousquet & Lugosi 2005, Bartlett, Bousquet & Mendelson 2005).

26.5 Bibliographic Remarks 387

Our proof of the concentration lemma is due to Kakade and Tewari lecture

notes. Kakade, Sridharan & Tewari (2008) gave a unified framework for deriving

bounds on the Rademacher complexity of linear classes with respect to different

assumptions on the norms.

27 Covering Numbers

In this chapter we describe another way to measure the complexity of sets, which

is called covering numbers.

27.1 Covering

definition 27.1 (Covering) Let A ⊂ Rm be a set of vectors. We say that A

is r-covered by a set A′, with respect to the Euclidean metric, if for all a ∈ A
there exists a′ ∈ A′ with ‖a − a′‖ ≤ r. We define by N(r,A) the cardinality of

the smallest A′ that r-covers A.

Example 27.1 (Subspace) Suppose that A ⊂ Rm, let c = maxa∈A ‖a‖, and as-

sume that A lies in a d-dimensional subspace of Rm. Then, N(r,A) ≤ (2c
√
d/r)d.

To see this, let v1, . . . ,vd be an orthonormal basis of the subspace. Then, any

a ∈ A can be written as a =
∑d
i=1 αivi with ‖α‖∞ ≤ ‖α‖2 = ‖a‖2 ≤ c. Let

ε ∈ R and consider the set

A′ =

{
d∑
i=1

α′ivi : ∀i, α′i ∈ {−c,−c+ ε,−c+ 2ε, . . . , c}

}
.

Given a ∈ A s.t. a =
∑d
i=1 αivi with ‖α‖∞ ≤ c, there exists a′ ∈ A′ such that

‖a− a′‖2 = ‖
∑
i

(α′i − αi)vi‖2 ≤ ε2
∑
i

‖vi‖2 ≤ ε2 d.

Choose ε = r/
√
d; then ‖a− a′‖ ≤ r and therefore A′ is an r-cover of A. Hence,

N(r,A) ≤ |A′| =
(

2c

ε

)d
=

(
2c
√
d

r

)d
.

27.1.1 Properties

The following lemma is immediate from the definition.

lemma 27.2 For any A ⊂ Rm, scalar c > 0, and vector a0 ∈ Rm, we have

∀r > 0, N(r, {ca + a0 : a ∈ A}) ≤ N(cr, A).

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

27.2 From Covering to Rademacher Complexity via Chaining 389

Next, we derive a contraction principle.

lemma 27.3 For each i ∈ [m], let φi : R → R be a ρ-Lipschitz function;

namely, for all α, β ∈ R we have |φi(α) − φi(β)| ≤ ρ |α − β|. For a ∈ Rm let

φ(a) denote the vector (φ1(a1), . . . , φm(am)). Let φ ◦A = {φ(a) : a ∈ A}. Then,

N(ρ r,φ ◦A) ≤ N(r,A).

Proof Define B = φ ◦ A. Let A′ be an r-cover of A and define B′ = φ ◦ A′.
Then, for all a ∈ A there exists a′ ∈ A′ with ‖a− a′‖ ≤ r. So,

‖φ(a)− φ(a′)‖2 =
∑
i

(φi(ai)− φi(a′i))2 ≤ ρ2
∑
i

(ai − a′i)2 ≤ (ρr)2.

Hence, B′ is an (ρ r)-cover of B.

27.2 From Covering to Rademacher Complexity via Chaining

The following lemma bounds the Rademacher complexity of A based on the

covering numbers N(r,A). This technique is called Chaining and is attributed

to Dudley.

lemma 27.4 Let c = minā maxa∈A ‖a− ā‖. Then, for any integer M > 0,

R(A) ≤ c 2−M√
m

+
6 c

m

M∑
k=1

2−k
√

log(N(c 2−k, A)).

Proof Let ā be a minimizer of the objective function given in the definition

of c. On the basis of Lemma 26.6, we can analyze the Rademacher complexity

assuming that ā = 0.

Consider the set B0 = {0} and note that it is a c-cover of A. Let B1, . . . , BM
be sets such that each Bk corresponds to a minimal (c 2−k)-cover of A. Let

a∗ = argmaxa∈A〈σ,a〉 (where if there is more than one maximizer, choose one

in an arbitrary way, and if a maximizer does not exist, choose a∗ such that

〈σ,a∗〉 is close enough to the supremum). Note that a∗ is a function of σ. For

each k, let b(k) be the nearest neighbor of a∗ in Bk (hence b(k) is also a function

of σ). Using the triangle inequality,

‖b(k) − b(k−1)‖ ≤ ‖b(k) − a∗‖+ ‖a∗ − b(k−1)‖ ≤ c (2−k + 2−(k−1)) = 3 c 2−k.

For each k define the set

B̂k = {(a− a′) : a ∈ Bk,a′ ∈ Bk−1, ‖a− a′‖ ≤ 3 c 2−k}.

390 Covering Numbers

We can now write

R(A) =
1

m
E〈σ,a∗〉

=
1

m
E

[
〈σ,a∗ − b(M)〉+

M∑
k=1

〈σ,b(k) − b(k−1)〉

]

≤ 1

m
E
[
‖σ‖ ‖a∗ − b(M)‖

]
+

M∑
k=1

1

m
E

[
sup
a∈B̂k

〈σ,a〉

]
.

Since ‖σ‖ =
√
m and ‖a∗ − b(M)‖ ≤ c 2−M , the first summand is at most

c√
m

2−M . Additionally, by Massart lemma,

1

m
E sup

a∈B̂k
〈σ,a〉 ≤ 3 c 2−k

√
2 log(N(c 2−k, A)2)

m
= 6 c 2−k

√
log(N(c 2−k, A))

m
.

Therefore,

R(A) ≤ c 2−M√
m

+
6c

m

M∑
k=1

2−k
√

log(N(c2−k, A)).

As a corollary we obtain the following:

lemma 27.5 Assume that there are α, β > 0 such that for any k ≥ 1 we have√
log(N(c2−k, A)) ≤ α+ βk.

Then,

R(A) ≤ 6c

m
(α+ 2β) .

Proof The bound follows from Lemma 27.4 by taking M →∞ and noting that∑∞
k=1 2−k = 1 and

∑∞
k=1 k2−k = 2.

Example 27.2 Consider a set A which lies in a d dimensional subspace of Rm

and such that c = maxa∈A ‖a‖. We have shown that N(r,A) ≤
(

2c
√
d

r

)d
. There-

fore, for any k, √
log(N(c2−k, A)) ≤

√
d log

(
2k+1

√
d
)

≤
√
d log(2

√
d) +

√
k d

≤
√
d log(2

√
d) +

√
d k.

Hence Lemma 27.5 yields

R(A) ≤ 6c

m

(√
d log(2

√
d) + 2

√
d

)
= O

(
c
√
d log(d)

m

)
.

27.3 Bibliographic Remarks 391

27.3 Bibliographic Remarks

The chaining technique is due to Dudley (1987). For an extensive study of cover-

ing numbers as well as other complexity measures that can be used to bound the

rate of uniform convergence we refer the reader to (Anthony & Bartlet 1999).

28 Proof of the Fundamental Theorem
of Learning Theory

In this chapter we prove Theorem 6.8 from Chapter 6. We remind the reader

the conditions of the theorem, which will hold throughout this chapter: H is a

hypothesis class of functions from a domain X to {0, 1}, the loss function is the

0− 1 loss, and VCdim(H) = d <∞.

We shall prove the upper bound for both the realizable and agnostic cases

and shall prove the lower bound for the agnostic case. The lower bound for the

realizable case is left as an exercise.

28.1 The Upper Bound for the Agnostic Case

For the upper bound we need to prove that there exists C such that H is agnostic

PAC learnable with sample complexity

mH(ε, δ) ≤ C d+ ln(1/δ)

ε2
.

We will prove the slightly looser bound:

mH(ε, δ) ≤ C d log(d/ε) + ln(1/δ)

ε2
. (28.1)

The tighter bound in the theorem statement requires a more involved proof, in

which a more careful analysis of the Rademacher complexity using a technique

called “chaining” should be used. This is beyond the scope of this book.

To prove Equation (28.1), it suffices to show that applying the ERM with a

sample size

m ≥ 4
32d

ε2
· log

(
64d

ε2

)
+

8

ε2
· (8d log(e/d) + 2 log(4/δ))

yields an ε, δ-learner for H. We prove this result on the basis of Theorem 26.5.

Let (x1, y1), . . . , (xm, ym) be a classification training set. Recall that the Sauer-

Shelah lemma tells us that if VCdim(H) = d then

|{(h(x1), . . . , h(xm)) : h ∈ H}| ≤
(em
d

)d
.

Denote A = {(1[h(x1)6=y1], . . . ,1[h(xm)6=ym]) : h ∈ H}. This clearly implies that

|A| ≤
(em
d

)d
.

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

28.2 The Lower Bound for the Agnostic Case 393

Combining this with Lemma 26.8 we obtain the following bound on the Rademacher

complexity:

R(A) ≤
√

2d log(em/d)

m
.

Using Theorem 26.5 we obtain that with probability of at least 1− δ, for every

h ∈ H we have that

LD(h)− LS(h) ≤
√

8d log(em/d)

m
+

√
2 log(2/δ)

m
.

Repeating the previous argument for minus the zero-one loss and applying the

union bound we obtain that with probability of at least 1 − δ, for every h ∈ H
it holds that

|LD(h)− LS(h)| ≤
√

8d log(em/d)

m
+

√
2 log(4/δ)

m

≤ 2

√
8d log(em/d) + 2 log(4/δ)

m
.

To ensure that this is smaller than ε we need

m ≥ 4

ε2
· (8d log(m) + 8d log(e/d) + 2 log(4/δ)) .

Using Lemma A.2, a sufficient condition for the inequality to hold is that

m ≥ 4
32d

ε2
· log

(
64d

ε2

)
+

8

ε2
· (8d log(e/d) + 2 log(4/δ)) .

28.2 The Lower Bound for the Agnostic Case

Here, we prove that there exists C such that H is agnostic PAC learnable with

sample complexity

mH(ε, δ) ≥ C d+ ln(1/δ)

ε2
.

We will prove the lower bound in two parts. First, we will show that m(ε, δ) ≥
0.5 log(1/(4δ))/ε2, and second we will show that for every δ ≤ 1/8 we have that

m(ε, δ) ≥ 8d/ε2. These two bounds will conclude the proof.

28.2.1 Showing That m(ε, δ) ≥ 0.5 log(1/(4δ))/ε2

We first show that for any ε < 1/
√

2 and any δ ∈ (0, 1), we have that m(ε, δ) ≥
0.5 log(1/(4δ))/ε2. To do so, we show that for m ≤ 0.5 log(1/(4δ))/ε2, H is not

learnable.

Choose one example that is shattered by H. That is, let c be an example such

394 Proof of the Fundamental Theorem of Learning Theory

that there are h+, h− ∈ H for which h+(c) = 1 and h−(c) = −1. Define two

distributions, D+ and D−, such that for b ∈ {±1} we have

Db({(x, y)}) =

{
1+ybε

2 if x = c

0 otherwise.

That is, all the distribution mass is concentrated on two examples (c, 1) and

(c,−1), where the probability of (c, b) is 1+bε
2 and the probability of (c,−b) is

1−bε
2 .

Let A be an arbitrary algorithm. Any training set sampled from Db has the

form S = (c, y1), . . . , (c, ym). Therefore, it is fully characterized by the vector

y = (y1, . . . , ym) ∈ {±1}m. Upon receiving a training set S, the algorithm A

returns a hypothesis h : X → {±1}. Since the error of A w.r.t. Db only depends

on h(c), we can think of A as a mapping from {±1}m into {±1}. Therefore,

we denote by A(y) the value in {±1} corresponding to the prediction of h(c),

where h is the hypothesis that A outputs upon receiving the training set S =

(c, y1), . . . , (c, ym).

Note that for any hypothesis h we have

LDb(h) =
1− h(c)bε

2
.

In particular, the Bayes optimal hypothesis is hb and

LDb(A(y))− LDb(hb) =
1−A(y)bε

2
− 1− ε

2
=

{
ε if A(y) 6= b

0 otherwise.

Fix A. For b ∈ {±1}, let Y b = {y ∈ {0, 1}m : A(y) 6= b}. The distribution Db
induces a probability Pb over {±1}m. Hence,

P [LDb(A(y))− LDb(hb) = ε] = Db(Y b) =
∑
y

Pb[y]1[A(y)6=b].

Denote N+ = {y : |{i : yi = 1}| ≥ m/2} and N− = {±1}m \N+. Note that for

any y ∈ N+ we have P+[y] ≥ P−[y] and for any y ∈ N− we have P−[y] ≥ P+[y].

28.2 The Lower Bound for the Agnostic Case 395

Therefore,

max
b∈{±1}

P [LDb(A(y))− LDb(hb) = ε]

= max
b∈{±1}

∑
y

Pb[y]1[A(y) 6=b]

≥ 1

2

∑
y

P+[y]1[A(y)6=+] +
1

2

∑
y

P−[y]1[A(y)6=−]

=
1

2

∑
y∈N+

(P+[y]1[A(y)6=+] + P−[y]1[A(y)6=−]) +
1

2

∑
y∈N−

(P+[y]1[A(y) 6=+] + P−[y]1[A(y)6=−])

≥ 1

2

∑
y∈N+

(P−[y]1[A(y) 6=+] + P−[y]1[A(y)6=−]) +
1

2

∑
y∈N−

(P+[y]1[A(y)6=+] + P+[y]1[A(y)6=−])

=
1

2

∑
y∈N+

P−[y] +
1

2

∑
y∈N−

P+[y] .

Next note that
∑

y∈N+ P−[y] =
∑

y∈N− P+[y], and both values are the prob-

ability that a Binomial (m, (1 − ε)/2) random variable will have value greater

than m/2. Using Lemma B.11, this probability is lower bounded by

1

2

(
1−

√
1− exp(−mε2/(1− ε2))

)
≥ 1

2

(
1−

√
1− exp(−2mε2)

)
,

where we used the assumption that ε2 ≤ 1/2. It follows that ifm ≤ 0.5 log(1/(4δ))/ε2

then there exists b such that

P [LDb(A(y))− LDb(hb) = ε]

≥ 1

2

(
1−

√
1−
√

4δ

)
≥ δ,

where the last inequality follows by standard algebraic manipulations. This con-

cludes our proof.

28.2.2 Showing That m(ε, 1/8) ≥ 8d/ε2

We shall now prove that for every ε < 1/(8
√

2) we have that m(ε, δ) ≥ 8d
ε2 .

Let ρ = 8ε and note that ρ ∈ (0, 1/
√

2). We will construct a family of distri-

butions as follows. First, let C = {c1, . . . , cd} be a set of d instances which are

shattered by H. Second, for each vector (b1, . . . , bd) ∈ {±1}d, define a distribu-

tion Db such that

Db({(x, y)}) =

{
1
d ·

1+ybiρ
2 if ∃i : x = ci

0 otherwise.

That is, to sample an example according to Db, we first sample an element ci ∈ C
uniformly at random, and then set the label to be bi with probability (1 + ρ)/2

or −bi with probability (1− ρ)/2.

It is easy to verify that the Bayes optimal predictor for Db is the hypothesis

396 Proof of the Fundamental Theorem of Learning Theory

h ∈ H such that h(ci) = bi for all i ∈ [d], and its error is 1−ρ
2 . In addition, for

any other function f : X → {±1}, it is easy to verify that

LDb(f) =
1 + ρ

2
· |{i ∈ [d] : f(ci) 6= bi}|

d
+

1− ρ
2
· |{i ∈ [d] : f(ci) = bi}|

d
.

Therefore,

LDb(f)−min
h∈H

LDb(h) = ρ · |{i ∈ [d] : f(ci) 6= bi}|
d

. (28.2)

Next, fix some learning algorithm A. As in the proof of the No-Free-Lunch

theorem, we have that

max
Db:b∈{±1}d

E
S∼Dmb

[
LDb(A(S))−min

h∈H
LDb(h)

]
(28.3)

≥ E
Db:b∼U({±1}d)

E
S∼Dmb

[
LDb(A(S))−min

h∈H
LDb(h)

]
(28.4)

= E
Db:b∼U({±1}d)

E
S∼Dmb

[
ρ · |{i ∈ [d] : A(S)(ci) 6= bi|

d

]
(28.5)

=
ρ

d

d∑
i=1

E
Db:b∼U({±1}d)

E
S∼Dmb

1[A(S)(ci) 6=bi], (28.6)

where the first equality follows from Equation (28.2). In addition, using the

definition of Db, to sample S ∼ Db we can first sample (j1, . . . , jm) ∼ U([d])m, set

xr = cji , and finally sample yr such that P[yr = bji] = (1 + ρ)/2. Let us simplify

the notation and use y ∼ b to denote sampling according to P[y = b] = (1+ρ)/2.

Therefore, the right-hand side of Equation (28.6) equals

ρ

d

d∑
i=1

E
j∼U([d])m

E
b∼U({±1}d)

E
∀r,yr∼bjr

1[A(S)(ci)6=bi]. (28.7)

We now proceed in two steps. First, we show that among all learning algorithms,

A, the one which minimizes Equation (28.7) (and hence also Equation (28.4))

is the Maximum-Likelihood learning rule, denoted AML. Formally, for each i,

AML(S)(ci) is the majority vote among the set {yr : r ∈ [m], xr = ci}. Second,

we lower bound Equation (28.7) for AML.

lemma 28.1 Among all algorithms, Equation (28.4) is minimized for A being

the Maximum-Likelihood algorithm, AML, defined as

∀i, AML(S)(ci) = sign

(∑
r:xr=ci

yr

)
.

Proof Fix some j ∈ [d]m. Note that given j and y ∈ {±1}m, the training set

S is fully determined. Therefore, we can write A(j, y) instead of A(S). Let us

also fix i ∈ [d]. Denote b¬i the sequence (b1, . . . , bi−1, bi+1, . . . , bm). Also, for any

28.2 The Lower Bound for the Agnostic Case 397

y ∈ {±1}m, let yI denote the elements of y corresponding to indices for which

jr = i and let y¬I be the rest of the elements of y. We have

E
b∼U({±1}d)

E
∀r,yr∼bjr

1[A(S)(ci) 6=bi]

=
1

2

∑
bi∈{±1}

E
b¬i∼U({±1}d−1)

∑
y

P [y|b¬i, bi]1[A(j,y)(ci) 6=bi]

= E
b¬i∼U({±1}d−1)

∑
y¬I

P [y¬I |b¬i] 1
2

∑
yI

 ∑
bi∈{±1}

P [yI |bi]1[A(j,y)(ci)6=bi]

 .

The sum within the parentheses is minimized when A(j, y)(ci) is the maximizer

of P [yI |bi] over bi ∈ {±1}, which is exactly the Maximum-Likelihood rule. Re-

peating the same argument for all i we conclude our proof.

Fix i. For every j, let ni(j) = {|t : jt = i|} be the number of instances in which

the instance is ci. For the Maximum-Likelihood rule, we have that the quantity

E
b∼U({±1}d)

E
∀r,yr∼bjr

1[AML(S)(ci)6=bi]

is exactly the probability that a binomial (ni(j), (1− ρ)/2) random variable will

be larger than ni(j)/2. Using Lemma B.11, and the assumption ρ2 ≤ 1/2, we

have that

P [B ≥ ni(j)/2] ≥ 1

2

(
1−

√
1− e−2ni(j)ρ2

)
.

We have thus shown that

ρ

d

d∑
i=1

E
j∼U([d])m

E
b∼U({±1}d)

E
∀r,yr∼bjr

1[A(S)(ci) 6=bi]

≥ ρ

2d

d∑
i=1

E
j∼U([d])m

(
1−

√
1− e−2ρ2ni(j)

)
≥ ρ

2d

d∑
i=1

E
j∼U([d])m

(
1−

√
2ρ2ni(j)

)
,

where in the last inequality we used the inequality 1− e−a ≤ a.

Since the square root function is concave, we can apply Jensen’s inequality to

obtain that the above is lower bounded by

≥ ρ

2d

d∑
i=1

(
1−

√
2ρ2 E

j∼U([d])m
ni(j)

)

=
ρ

2d

d∑
i=1

(
1−

√
2ρ2m/d

)
=
ρ

2

(
1−

√
2ρ2m/d

)
.

398 Proof of the Fundamental Theorem of Learning Theory

As long as m < d
8ρ2 , this term would be larger than ρ/4.

In summary, we have shown that if m < d
8ρ2 then for any algorithm there

exists a distribution such that

E
S∼Dm

[
LD(A(S))−min

h∈H
LD(h)

]
≥ ρ/4.

Finally, Let ∆ = 1
ρ (LD(A(S)) − minh∈H LD(h)) and note that ∆ ∈ [0, 1] (see

Equation (28.5)). Therefore, using Lemma B.1, we get that

P[LD(A(S))−min
h∈H

LD(h) > ε] = P
[
∆ >

ε

ρ

]
≥ E[∆]− ε

ρ

≥ 1

4
− ε

ρ
.

Choosing ρ = 8ε we conclude that if m < d
512 ε2 , then with probability of at least

1/8 we will have LD(A(S))−minh∈H LD(h) ≥ ε.

28.3 The Upper Bound for the Realizable Case

Here we prove that there exists C such that H is PAC learnable with sample

complexity

mH(ε, δ) ≤ C d ln(1/ε) + ln(1/δ)

ε
.

We do so by showing that for m ≥ C d ln(1/ε)+ln(1/δ)
ε , H is learnable using the

ERM rule. We prove this claim based on the notion of ε-nets.

definition 28.2 (ε-net) Let X be a domain. S ⊂ X is an ε-net for H ⊂ 2X

with respect to a distribution D over X if

∀h ∈ H : D(h) ≥ ε ⇒ h ∩ S 6= ∅.

theorem 28.3 Let H ⊂ 2X with VCdim(H) = d. Fix ε ∈ (0, 1), δ ∈ (0, 1/4)

and let

m ≥ 8

ε

(
2d log

(
16e

ε

)
+ log

(
2

δ

))
.

Then, with probability of at least 1− δ over a choice of S ∼ Dm we have that S

is an ε-net for H.

Proof Let

B = {S ⊂ X : |S| = m, ∃h ∈ H,D(h) ≥ ε, h ∩ S = ∅}

be the set of sets which are not ε-nets. We need to bound P[S ∈ B]. Define

B′ = {(S, T) ⊂ X : |S| = |T | = m, ∃h ∈ H,D(h) ≥ ε, h ∩ S = ∅, |T ∩ h| > εm
2 }.

28.3 The Upper Bound for the Realizable Case 399

Claim 1
P[S ∈ B] ≤ 2P[(S, T) ∈ B′].
Proof of Claim 1 : Since S and T are chosen independently we can write

P[(S, T) ∈ B′] = E
(S,T)∼D2m

[
1[(S,T)∈B′]

]
= E
S∼Dm

[
E

T∼Dm

[
1[(S,T)∈B′]

]]
.

Note that (S, T) ∈ B′ implies S ∈ B and therefore 1[(S,T)∈B′] = 1[(S,T)∈B′] 1[S∈B],

which gives

P[(S, T) ∈ B′] = E
S∼Dm

E
T∼Dm

1[(S,T)∈B′] 1[S∈B]

= E
S∼Dm

1[S∈B] E
T∼Dm

1[(S,T)∈B′].

Fix some S. Then, either 1[S∈B] = 0 or S ∈ B and then ∃hS such that D(hS) ≥ ε
and |hS ∩ S| = 0. It follows that a sufficient condition for (S, T) ∈ B′ is that

|T ∩ hS | > εm
2 . Therefore, whenever S ∈ B we have

E
T∼Dm

1[(S,T)∈B′] ≥ P
T∼Dm

[|T ∩ hS | > εm
2].

But, since we now assume S ∈ B we know that D(hS) = ρ ≥ ε. Therefore,

|T ∩hS | is a binomial random variable with parameters ρ (probability of success

for a single try) and m (number of tries). Chernoff’s inequality implies

P[|T∩hS | ≤ ρm
2] ≤ e

− 2
mρ (mρ−mρ/2)2

= e−mρ/2 ≤ e−mε/2 ≤ e−d log(1/δ)/2 = δd/2 ≤ 1/2.

Thus,

P[|T ∩ hS | > εm
2] = 1− P[|T ∩ hS | ≤ εm

2] ≥ 1− P[|T ∩ hS | ≤ ρm
2] ≥ 1/2.

Combining all the preceding we conclude the proof of Claim 1.

Claim 2 (Symmetrization):
P[(S, T) ∈ B′] ≤ e−εm/4 τH(2m).

Proof of Claim 2 : To simplify notation, let α = mε/2 and for a sequence A =

(x1, . . . , x2m) let A0 = (x1, . . . , xm). Using the definition of B′ we get that

P[A ∈ B′] = E
A∼D2m

max
h∈H

1[D(h)≥ε] 1[|h∩A0|=0] 1[|h∩A|≥α]

≤ E
A∼D2m

max
h∈H

1[|h∩A0|=0] 1[|h∩A|≥α].

Now, let us define by HA the effective number of different hypotheses on A,

namely, HA = {h ∩A : h ∈ H }. It follows that

P[A ∈ B′] ≤ E
A∼D2m

max
h∈HA

1[|h∩A0|=0] 1[|h∩A|≥α]

≤ E
A∼D2m

∑
h∈HA

1[|h∩A0|=0] 1[|h∩A|≥α].

Let J = {j ⊂ [2m] : |j| = m}. For any j ∈ J and A = (x1, . . . , x2m) define

Aj = (xj1 , . . . , xjm). Since the elements of A are chosen i.i.d., we have that

for any j ∈ J and any function f(A,A0) it holds that EA∼D2m [f(A,A0)] =

400 Proof of the Fundamental Theorem of Learning Theory

EA∼D2m [f(A,Aj)]. Since this holds for any j it also holds for the expectation of

j chosen at random from J . In particular, it holds for the function f(A,A0) =∑
h∈HA 1[|h∩A0|=0] 1[|h∩A|≥α]. We therefore obtain that

P[A ∈ B′] ≤ E
A∼D2m

E
j∼J

∑
h∈HA

1[|h∩Aj|=0] 1[|h∩A|≥α]

= E
A∼D2m

∑
h∈HA

1[|h∩A|≥α] E
j∼J

1[|h∩Aj|=0].

Now, fix some A s.t. |h ∩ A| ≥ α. Then, Ej 1[|h∩Aj|=0] is the probability that

when choosing m balls from a bag with at least α red balls, we will never choose

a red ball. This probability is at most

(1− α/(2m))m = (1− ε/4)m ≤ e−εm/4.

We therefore get that

P[A ∈ B′] ≤ E
A∼D2m

∑
h∈HA

e−εm/4 ≤ e−εm/4 E
A∼D2m

|HA|.

Using the definition of the growth function we conclude the proof of Claim 2.

Completing the Proof: By Sauer’s lemma we know that τH(2m) ≤ (2em/d)d.

Combining this with the two claims we obtain that

P[S ∈ B] ≤ 2(2em/d)d e−εm/4.

We would like the right-hand side of the inequality to be at most δ; that is,

2(2em/d)d e−εm/4 ≤ δ.

Rearranging, we obtain the requirement

m ≥ 4

ε
(d log(2em/d) + log(2/δ)) =

4d

ε
log(m) +

4

ε
(d log(2e/d) + log(2/δ).

Using Lemma A.2, a sufficient condition for the preceding to hold is that

m ≥ 16d

ε
log

(
8d

ε

)
+

8

ε
(d log(2e/d) + log(2/δ).

A sufficient condition for this is that

m ≥ 16d

ε
log

(
8d

ε

)
+

16

ε
(d log(2e/d) + 1

2 log(2/δ)

=
16d

ε

(
log

(
8d 2e

dε

))
+

8

ε
log(2/δ)

=
8

ε

(
2d log

(
16e

ε

)
+ log

(
2

δ

))
.

and this concludes our proof.

28.3 The Upper Bound for the Realizable Case 401

28.3.1 From ε-Nets to PAC Learnability

theorem 28.4 Let H be a hypothesis class over X with VCdim(H) = d. Let

D be a distribution over X and let c ∈ H be a target hypothesis. Fix ε, δ ∈ (0, 1)

and let m be as defined in Theorem 28.3. Then, with probability of at least 1− δ
over a choice of m i.i.d. instances from X with labels according to c we have that

any ERM hypothesis has a true error of at most ε.

Proof Define the class Hc = {c
a
h : h ∈ H}, where c

a
h = (h\c)∪ (c\h). It is

easy to verify that if some A ⊂ X is shattered byH then it is also shattered byHc
and vice versa. Hence, VCdim(H) = VCdim(Hc). Therefore, using Theorem 28.3

we know that with probability of at least 1− δ, the sample S is an ε-net for Hc.
Note that LD(h) = D(h

a
c). Therefore, for any h ∈ H with LD(h) ≥ ε we have

that |(h
a
c)∩S| > 0, which implies that h cannot be an ERM hypothesis, which

concludes our proof.

29 Multiclass Learnability

In Chapter 17 we have introduced the problem of multiclass categorization, in

which the goal is to learn a predictor h : X → [k]. In this chapter we address PAC

learnability of multiclass predictors with respect to the 0-1 loss. As in Chapter 6,

the main goal of this chapter is to:

• Characterize which classes of multiclass hypotheses are learnable in the (mul-

ticlass) PAC model.

• Quantify the sample complexity of such hypothesis classes.

In view of the fundamental theorem of learning theory (Theorem 6.8), it is natu-

ral to seek a generalization of the VC dimension to multiclass hypothesis classes.

In Section 29.1 we show such a generalization, called the Natarajan dimension,

and state a generalization of the fundamental theorem based on the Natarajan

dimension. Then, we demonstrate how to calculate the Natarajan dimension of

several important hypothesis classes.

Recall that the main message of the fundamental theorem of learning theory

is that a hypothesis class of binary classifiers is learnable (with respect to the

0-1 loss) if and only if it has the uniform convergence property, and then it

is learnable by any ERM learner. In Chapter 13, Exercise 2, we have shown

that this equivalence breaks down for a certain convex learning problem. The

last section of this chapter is devoted to showing that the equivalence between

learnability and uniform convergence breaks down even in multiclass problems

with the 0-1 loss, which are very similar to binary classification. Indeed, we

construct a hypothesis class which is learnable by a specific ERM learner, but

for which other ERM learners might fail and the uniform convergence property

does not hold.

29.1 The Natarajan Dimension

In this section we define the Natarajan dimension, which is a generalization of

the VC dimension to classes of multiclass predictors. Throughout this section,

let H be a hypothesis class of multiclass predictors; namely, each h ∈ H is a

function from X to [k].

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

29.2 The Multiclass Fundamental Theorem 403

To define the Natarajan dimension, we first generalize the definition of shat-

tering.

definition 29.1 (Shattering (Multiclass Version)) We say that a set C ⊂ X
is shattered by H if there exist two functions f0, f1 : C → [k] such that

• For every x ∈ C, f0(x) 6= f1(x).

• For every B ⊂ C, there exists a function h ∈ H such that

∀x ∈ B, h(x) = f0(x) and ∀x ∈ C \B, h(x) = f1(x).

definition 29.2 (Natarajan Dimension) The Natarajan dimension of H, de-

noted Ndim(H), is the maximal size of a shattered set C ⊂ X .

It is not hard to see that in the case that there are exactly two classes,

Ndim(H) = VCdim(H). Therefore, the Natarajan dimension generalizes the VC

dimension. We next show that the Natarajan dimension allows us to general-

ize the fundamental theorem of statistical learning from binary classification to

multiclass classification.

29.2 The Multiclass Fundamental Theorem

theorem 29.3 (The Multiclass Fundamental Theorem) There exist absolute

constants C1, C2 > 0 such that the following holds. For every hypothesis class H
of functions from X to [k], such that the Natarajan dimension of H is d, we have

1. H has the uniform convergence property with sample complexity

C1
d+ log(1/δ)

ε2
≤ mUC

H (ε, δ) ≤ C2
d log (k) + log(1/δ)

ε2
.

2. H is agnostic PAC learnable with sample complexity

C1
d+ log(1/δ)

ε2
≤ mH(ε, δ) ≤ C2

d log (k) + log(1/δ)

ε2
.

3. H is PAC learnable (assuming realizability) with sample complexity

C1
d+ log(1/δ)

ε
≤ mH(ε, δ) ≤ C2

d log
(
kd
ε

)
+ log(1/δ)

ε
.

29.2.1 On the Proof of Theorem 29.3

The lower bounds in Theorem 29.3 can be deduced by a reduction from the

binary fundamental theorem (see Exercise 5).

The upper bounds in Theorem 29.3 can be proved along the same lines of the

proof of the fundamental theorem for binary classification, given in Chapter 28

(see Exercise 4). The sole ingredient of that proof that should be modified in a

nonstraightforward manner is Sauer’s lemma. It applies only to binary classes

and therefore must be replaced. An appropriate substitute is Natarajan’s lemma:

404 Multiclass Learnability

lemma 29.4 (Natarajan) |H| ≤ |X |Ndim(H) · k2Ndim(H).

The proof of Natarajan’s lemma shares the same spirit of the proof of Sauer’s

lemma and is left as an exercise (see Exercise 3).

29.3 Calculating the Natarajan Dimension

In this section we show how to calculate (or estimate) the Natarajan dimen-

sion of several popular classes, some of which were studied in Chapter 17. As

these calculations indicate, the Natarajan dimension is often proportional to the

number of parameters required to define a hypothesis.

29.3.1 One-versus-All Based Classes

In Chapter 17 we have seen two reductions of multiclass categorization to bi-

nary classification: One-versus-All and All-Pairs. In this section we calculate the

Natarajan dimension of the One-versus-All method.

Recall that in One-versus-All we train, for each label, a binary classifier that

distinguishes between that label and the rest of the labels. This naturally sug-

gests considering multiclass hypothesis classes of the following form. Let Hbin ⊂
{0, 1}X be a binary hypothesis class. For every h̄ = (h1, . . . , hk) ∈ (Hbin)

k
define

T (h̄) : X → [k] by

T (h̄)(x) = argmax
i∈[k]

hi(x).

If there are two labels that maximize hi(x), we choose the smaller one. Also, let

HOvA,k
bin = {T (h̄) : h̄ ∈ (Hbin)

k}.

What “should” be the Natarajan dimension of HOvA,k
bin ? Intuitively, to specify a

hypothesis in Hbin we need d = VCdim(Hbin) parameters. To specify a hypothe-

sis in HOvA,k
bin , we need to specify k hypotheses in Hbin. Therefore, kd parameters

should suffice. The following lemma establishes this intuition.

lemma 29.5 If d = VCdim(Hbin) then

Ndim(HOvA,k
bin) ≤ 3kd log (kd) .

Proof Let C ⊂ X be a shattered set. By the definition of shattering (for mul-

ticlass hypotheses) ∣∣∣(HOvA,k
bin

)
C

∣∣∣ ≥ 2|C|.

On the other hand, each hypothesis in HOvA,k
bin is determined by using k hypothe-

ses from Hbin. Therefore,∣∣∣(HOvA,k
bin

)
C

∣∣∣ ≤ | (Hbin)C |
k.

29.3 Calculating the Natarajan Dimension 405

By Sauer’s lemma, | (Hbin)C | ≤ |C|d. We conclude that

2|C| ≤
∣∣∣(HOvA,k

bin

)
C

∣∣∣ ≤ |C|dk.
The proof follows by taking the logarithm and applying Lemma A.1.

How tight is Lemma 29.5? It is not hard to see that for some classes, Ndim(HOvA,k
bin)

can be much smaller than dk (see Exercise 1). However there are several natural

binary classes, Hbin (e.g., halfspaces), for which Ndim(HOvA,k
bin) = Ω(dk) (see

Exercise 6).

29.3.2 General Multiclass-to-Binary Reductions

The same reasoning used to establish Lemma 29.5 can be used to upper bound

the Natarajan dimension of more general multiclass-to-binary reductions. These

reductions train several binary classifiers on the data. Then, given a new in-

stance, they predict its label by using some rule that takes into account the

labels predicted by the binary classifiers. These reductions include One-versus-

All and All-Pairs.

Suppose that such a method trains l binary classifiers from a binary class Hbin,

and r : {0, 1}l → [k] is the rule that determines the (multiclass) label according

to the predictions of the binary classifiers. The hypothesis class corresponding

to this method can be defined as follows. For every h̄ = (h1, . . . , hl) ∈ (Hbin)
l

define R(h̄) : X → [k] by

R(h̄)(x) = r(h1(x), . . . , hl(x)).

Finally, let

Hrbin = {R(h̄) : h̄ ∈ (Hbin)
l}.

Similarly to Lemma 29.5 it can be proven that:

lemma 29.6 If d = VCdim(Hbin) then

Ndim(Hrbin) ≤ 3 l d log (l d) .

The proof is left as Exercise 2.

29.3.3 Linear Multiclass Predictors

Next, we consider the class of linear multiclass predictors (see Section 17.2). Let

Ψ : X × [k]→ Rd be some class-sensitive feature mapping and let

HΨ =

{
x 7→ argmax

i∈[k]

〈w,Ψ(x, i)〉 : w ∈ Rd
}
. (29.1)

Each hypothesis in HΨ is determined by d parameters, namely, a vector w ∈
Rd. Therefore, we would expect that the Natarajan dimension would be upper

bounded by d. Indeed:

406 Multiclass Learnability

theorem 29.7 Ndim(HΨ) ≤ d .

Proof Let C ⊂ X be a shattered set, and let f0, f1 : C → [k] be the two

functions that witness the shattering. We need to show that |C| ≤ d. For every

x ∈ C let ρ(x) = Ψ(x, f0(x)) − Ψ(x, f1(x)). We claim that the set ρ(C)
def
=

{ρ(x) : x ∈ C} consists of |C| elements (i.e., ρ is one to one) and is shattered

by the binary hypothesis class of homogeneous linear separators on Rd,

H = {x 7→ sign(〈w,x〉) : w ∈ Rd}.

Since VCdim(H) = d, it will follow that |C| = |ρ(C)| ≤ d, as required.

To establish our claim it is enough to show that |Hρ(C)| = 2|C|. Indeed, given

a subset B ⊂ C, by the definition of shattering, there exists hB ∈ HΨ for which

∀x ∈ B, hB(x) = f0(x) and ∀x ∈ C \B, hB(x) = f1(x).

Let wB ∈ Rd be a vector that defines hB . We have that, for every x ∈ B,

〈w,Ψ(x, f0(x))〉 > 〈w,Ψ(x, f1(x))〉 ⇒ 〈w, ρ(x)〉 > 0.

Similarly, for every x ∈ C \B,

〈w, ρ(x)〉 < 0.

It follows that the hypothesis gB ∈ H defined by the same w ∈ Rd label the

points in ρ(B) by 1 and the points in ρ(C \ B) by 0. Since this holds for every

B ⊆ C we obtain that |C| = |ρ(C)| and |Hρ(C)| = 2|C|, which concludes our

proof.

The theorem is tight in the sense that there are mappings Ψ for which Ndim(HΨ) =

Ω(d). For example, this is true for the multivector construction (see Section 17.2

and the Bibliographic Remarks at the end of this chapter). We therefore con-

clude:

corollary 29.8 Let X = Rn and let Ψ : X × [k]→ Rnk be the class sensitive

feature mapping for the multi-vector construction:

Ψ(x, y) = [0, . . . , 0︸ ︷︷ ︸
∈R(y−1)n

, x1, . . . , xn︸ ︷︷ ︸
∈Rn

, 0, . . . , 0︸ ︷︷ ︸
∈R(k−y)n

].

Let HΨ be as defined in Equation (29.1). Then, the Natarajan dimension of HΨ

satisfies

(k − 1)(n− 1) ≤ Ndim(HΨ) ≤ kn.

29.4 On Good and Bad ERMs

In this section we present an example of a hypothesis class with the property

that not all ERMs for the class are equally successful. Furthermore, if we allow

an infinite number of labels, we will also obtain an example of a class that is

29.4 On Good and Bad ERMs 407

learnable by some ERM, but other ERMs will fail to learn it. Clearly, this also

implies that the class is learnable but it does not have the uniform convergence

property. For simplicity, we consider only the realizable case.

The class we consider is defined as follows. The instance space X will be any

finite or countable set. Let Pf (X) be the collection of all finite and cofinite

subsets of X (that is, for each A ∈ Pf (X), either A or X \ A must be finite).

Instead of [k], the label set is Y = Pf (X) ∪ {∗}, where ∗ is some special label.

For every A ∈ Pf (X) define hA : X → Y by

hA(x) =

{
A x ∈ A
∗ x /∈ A

Finally, the hypothesis class we take is

H = {hA : A ∈ Pf (X)}.

Let A be some ERM algorithm for H. Assume that A operates on a sample

labeled by hA ∈ H. Since hA is the only hypothesis in H that might return

the label A, if A observes the label A, it “knows” that the learned hypothesis

is hA, and, as an ERM, must return it (note that in this case the error of the

returned hypothesis is 0). Therefore, to specify an ERM, we should only specify

the hypothesis it returns upon receiving a sample of the form

S = {(x1, ∗), . . . , (xm, ∗)}.

We consider two ERMs: The first, Agood, is defined by

Agood(S) = h∅;

that is, it outputs the hypothesis which predicts ‘*’ for every x ∈ X . The second

ERM, Abad, is defined by

Abad(S) = h{x1,...xm}c .

The following claim shows that the sample complexity of Abad is about |X |-times

larger than the sample complexity of Agood. This establishes a gap between

different ERMs. If X is infinite, we even obtain a learnable class that is not

learnable by every ERM.

claim 29.9

1. Let ε, δ > 0, D a distribution over X and hA ∈ H. Let S be an i.i.d. sample

consisting of m ≥ 1
ε log

(
1
δ

)
examples, sampled according to D and labeled by

hA. Then, with probability of at least 1− δ, the hypothesis returned by Agood
will have an error of at most ε.

2. There exists a constant a > 0 such that for every 0 < ε < a there exists a

distribution D over X and hA ∈ H such that the following holds. The hypoth-

esis returned by Abad upon receiving a sample of size m ≤ |X|−1
6ε , sampled

according to D and labeled by hA, will have error ≥ ε with probability ≥ e− 1
6 .

408 Multiclass Learnability

Proof Let D be a distribution over X and suppose that the correct labeling

is hA. For any sample, Agood returns either h∅ or hA. If it returns hA then its

true error is zero. Thus, it returns a hypothesis with error ≥ ε only if all the m

examples in the sample are from X \ A while the error of h∅, LD(h∅) = PD[A],

is ≥ ε. Assume m ≥ 1
ε log(1

δ); then the probability of the latter event is no more

than (1− ε)m ≤ e−εm ≤ δ. This establishes item 1.

Next we prove item 2. We restrict the proof to the case that |X | = d < ∞.

The proof for infinite X is similar. Suppose that X = {x0, . . . , xd−1}.
Let a > 0 be small enough such that 1 − 2ε ≥ e−4ε for every ε < a and fix

some ε < a. Define a distribution on X by setting P[x0] = 1 − 2ε and for all

1 ≤ i ≤ d− 1, P[xi] = 2ε
d−1 . Suppose that the correct hypothesis is h∅ and let the

sample size be m. Clearly, the hypothesis returned by Abad will err on all the

examples from X which are not in the sample. By Chernoff’s bound, if m ≤ d−1
6ε ,

then with probability ≥ e− 1
6 , the sample will include no more than d−1

2 examples

from X . Thus the returned hypothesis will have error ≥ ε.

The conclusion of the example presented is that in multiclass classification,

the sample complexity of different ERMs may differ. Are there “good” ERMs

for every hypothesis class? The following conjecture asserts that the answer is

yes.

conjecture 29.10 The realizable sample complexity of every hypothesis class

H ⊂ [k]
X

is

mH(ε, δ) = Õ

(
Ndim(H)

ε

)
.

We emphasize that the Õ notation may hide only poly-log factors of ε, δ, and

Ndim(H), but no factor of k.

29.5 Bibliographic Remarks

The Natarajan dimension is due to Natarajan (1989). That paper also established

the Natarajan lemma and the generalization of the fundamental theorem. Gen-

eralizations and sharper versions of the Natarajan lemma are studied in Haussler

& Long (1995). Ben-David, Cesa-Bianchi, Haussler & Long (1995) defined a large

family of notions of dimensions, all of which generalize the VC dimension and

may be used to estimate the sample complexity of multiclass classification.

The calculation of the Natarajan dimension, presented here, together with

calculation of other classes, can be found in Daniely et al. (2012). The example

of good and bad ERMs, as well as conjecture 29.10, are from Daniely et al.

(2011).

29.6 Exercises 409

29.6 Exercises

1. Let d, k > 0. Show that there exists a binary hypothesis Hbin of VC dimension

d such that Ndim(HOvA,k
bin) = d.

2. Prove Lemma 29.6.

3. Prove Natarajan’s lemma.

Hint: Fix some x0 ∈ X . For i, j ∈ [k], denote by Hij all the functions f :

X \ {x0} → [k] that can be extended to a function in H both by defining

f(x0) = i and by defining f(x0) = j. Show that |H| ≤ |HX\{x0}|+
∑
i6=j |Hij |

and use induction.

4. Adapt the proof of the binary fundamental theorem and Natarajan’s lemma

to prove that, for some universal constant C > 0 and for every hypothesis

class of Natarajan dimension d, the agnostic sample complexity of H is

mH(ε, δ) ≤ C
d log

(
kd
ε

)
+ log(1/δ)

ε2
.

5. Prove that, for some universal constant C > 0 and for every hypothesis class

of Natarajan dimension d, the agnostic sample complexity of H is

mH(ε, δ) ≥ C d+ log(1/δ)

ε2
.

Hint: Deduce it from the binary fundamental theorem.

6. Let H be the binary hypothesis class of (nonhomogenous) halfspaces in Rd.
The goal of this exercise is to prove that Ndim(HOvA,k) ≥ (d− 1) · (k − 1).

1. Let Hdiscrete be the class of all functions f : [k − 1] × [d − 1] → {0, 1} for

which there exists some i0 such that, for every j ∈ [d− 1]

∀i < i0, f(i, j) = 1 while ∀i > i0, f(i, j) = 0.

Show that Ndim(HOvA,k
discrete) = (d− 1) · (k − 1).

2. Show that Hdiscrete can be realized by H. That is, show that there exists

a mapping ψ : [k − 1]× [d− 1]→ Rd such that

Hdiscrete ⊂ {h ◦ ψ : h ∈ H} .

Hint: You can take ψ(i, j) to be the vector whose jth coordinate is 1, whose

last coordinate is i and the rest are zeros.

3. Conclude that Ndim(HOvA,k) ≥ (d− 1) · (k − 1).

30 Compression Bounds

Throughout the book, we have tried to characterize the notion of learnability

using different approaches. At first we have shown that the uniform conver-

gence property of a hypothesis class guarantees successful learning. Later on we

introduced the notion of stability and have shown that stable algorithms are

guaranteed to be good learners. Yet there are other properties which may be

sufficient for learning, and in this chapter and its sequel we will introduce two

approaches to this issue: compression bounds and the PAC-Bayes approach.

In this chapter we study compression bounds. Roughly speaking, we shall see

that if a learning algorithm can express the output hypothesis using a small sub-

set of the training set, then the error of the hypothesis on the rest of the examples

estimates its true error. In other words, an algorithm that can “compress” its

output is a good learner.

30.1 Compression Bounds

To motivate the results, let us first consider the following learning protocol.

First, we sample a sequence of k examples denoted T . On the basis of these

examples, we construct a hypothesis denoted hT . Now we would like to estimate

the performance of hT so we sample a fresh sequence of m−k examples, denoted

V , and calculate the error of hT on V . Since V and T are independent, we

immediately get the following from Bernstein’s inequality (see Lemma B.10).

lemma 30.1 Assume that the range of the loss function is [0, 1]. Then,

P

[
LD(hT)− LV (hT) ≥

√
2LV (hT) log(1/δ)

|V |
+

4 log(1/δ)

|V |

]
≤ δ.

To derive this bound, all we needed was independence between T and V .

Therefore, we can redefine the protocol as follows. First, we agree on a sequence

of k indices I = (i1, . . . , ik) ∈ [m]k. Then, we sample a sequence of m examples

S = (z1, . . . , zm). Now, define T = SI = (zi1 , . . . , zik) and define V to be the

rest of the examples in S. Note that this protocol is equivalent to the protocol

we defined before – hence Lemma 30.1 still holds.

Applying a union bound over the choice of the sequence of indices we obtain

the following theorem.

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

30.1 Compression Bounds 411

theorem 30.2 Let k be an integer and let B : Zk → H be a mapping from

sequences of k examples to the hypothesis class. Let m ≥ 2k be a training set

size and let A : Zm → H be a learning rule that receives a training sequence S

of size m and returns a hypothesis such that A(S) = B(zi1 , . . . , zik) for some

(i1, . . . , ik) ∈ [m]k. Let V = {zj : j /∈ (i1, . . . , ik)} be the set of examples which

were not selected for defining A(S). Then, with probability of at least 1− δ over

the choice of S we have

LD(A(S)) ≤ LV (A(S)) +

√
LV (A(S))

4k log(m/δ)

m
+

8k log(m/δ)

m
.

Proof For any I ∈ [m]k let hI = B(zi1 , . . . , zik). Let n = m − k. Combining

Lemma 30.1 with the union bound we have

P

[
∃I ∈ [m]k s.t. LD(hI)− LV (hI) ≥

√
2LV (hI) log(1/δ)

n
+

4 log(1/δ)

n

]

≤
∑

I∈[m]k

P

[
LD(hI)− LV (hI) ≥

√
2LV (hI) log(1/δ)

n
+

4 log(1/δ)

n

]
≤ mkδ.

Denote δ′ = mkδ. Using the assumption k ≤ m/2, which implies that n =

m− k ≥ m/2, the above implies that with probability of at least 1− δ′ we have

that

LD(A(S)) ≤ LV (A(S)) +

√
LV (A(S))

4k log(m/δ′)

m
+

8k log(m/δ′)

m
,

which concludes our proof.

As a direct corollary we obtain:

corollary 30.3 Assuming the conditions of Theorem 30.2, and further as-

suming that LV (A(S)) = 0, then, with probability of at least 1−δ over the choice

of S we have

LD(A(S)) ≤ 8k log(m/δ)

m
.

These results motivate the following definition:

definition 30.4 (Compression Scheme) Let H be a hypothesis class of

functions from X to Y and let k be an integer. We say that H has a compression

scheme of size k if the following holds:

For all m there exists A : Zm → [m]k and B : Zk → H such that for all h ∈ H,

if we feed any training set of the form (x1, h(x1)), . . . , (xm, h(xm)) into A and

then feed (xi1 , h(xi1)), . . . , (xik , h(xik)) into B, where (i1, . . . , ik) is the output

of A, then the output of B, denoted h′, satisfies LS(h′) = 0.

It is possible to generalize the definition for unrealizable sequences as follows.

412 Compression Bounds

definition 30.5 (Compression Scheme for Unrealizable Sequences)

Let H be a hypothesis class of functions from X to Y and let k be an integer.

We say that H has a compression scheme of size k if the following holds:

For all m there exists A : Zm → [m]k and B : Zk → H such that for all h ∈ H,

if we feed any training set of the form (x1, y1), . . . , (xm, ym) into A and then

feed (xi1 , yi1), . . . , (xik , yik) into B, where (i1, . . . , ik) is the output of A, then

the output of B, denoted h′, satisfies LS(h′) ≤ LS(h).

The following lemma shows that the existence of a compression scheme for

the realizable case also implies the existence of a compression scheme for the

unrealizable case.

lemma 30.6 Let H be a hypothesis class for binary classification, and assume

it has a compression scheme of size k in the realizable case. Then, it has a

compression scheme of size k for the unrealizable case as well.

Proof Consider the following scheme: First, find an ERM hypothesis and denote

it by h. Then, discard all the examples on which h errs. Now, apply the realizable

compression scheme on the examples that have not been removed. The output of

the realizable compression scheme, denoted h′, must be correct on the examples

that have not been removed. Since h errs on the removed examples it follows

that the error of h′ cannot be larger than the error of h; hence h′ is also an ERM

hypothesis.

30.2 Examples

In the examples that follows, we present compression schemes for several hy-

pothesis classes for binary classification. In light of Lemma 30.6 we focus on the

realizable case. Therefore, to show that a certain hypothesis class has a com-

pression scheme, it is necessary to show that there exist A,B, and k for which

LS(h′) = 0.

30.2.1 Axis Aligned Rectangles

Note that this is an uncountable infinite class. We show that there is a simple

compression scheme. Consider the algorithm A that works as follows: For each

dimension, choose the two positive examples with extremal values at this dimen-

sion. Define B to be the function that returns the minimal enclosing rectangle.

Then, for k = 2d, we have that in the realizable case, LS(B(A(S))) = 0.

30.2.2 Halfspaces

Let X = Rd and consider the class of homogenous halfspaces, {x 7→ sign(〈w,x〉) :

w ∈ Rd}.

30.2 Examples 413

A Compression Scheme:
W.l.o.g. assume all labels are positive (otherwise, replace xi by yixi). The com-

pression scheme we propose is as follows. First, A finds the vector w which is

in the convex hull of {x1, . . . ,xm} and has minimal norm. Then, it represents it

as a convex combination of d points in the sample (it will be shown later that

this is always possible). The output of A are these d points. The algorithm B

receives these d points and set w to be the point in their convex hull of minimal

norm.

Next we prove that this indeed is a compression sceme. Since the data is

linearly separable, the convex hull of {x1, . . . ,xm} does not contain the origin.

Consider the point w in this convex hull closest to the origin. (This is a unique

point which is the Euclidean projection of the origin onto this convex hull.) We

claim that w separates the data.1 To see this, assume by contradiction that

〈w,xi〉 ≤ 0 for some i. Take w′ = (1 − α)w + αxi for α = ‖w‖2
‖xi‖2+‖w‖2 ∈ (0, 1).

Then w′ is also in the convex hull and

‖w′‖2 = (1− α)2‖w‖2 + α2‖xi‖2 + 2α(1− α)〈w,xi〉
≤ (1− α)2‖w‖2 + α2‖xi‖2

=
‖xi‖4‖w‖2 + ‖xi‖2‖w‖4

(‖w‖2 + ‖xi‖2)2

=
‖xi‖2‖w‖2

‖w‖2 + ‖xi‖2

= ‖w‖2 · 1

‖w‖2/‖xi‖2 + 1

< ‖w‖2,

which leads to a contradiction.

We have thus shown that w is also an ERM. Finally, since w is in the convex

hull of the examples, we can apply Caratheodory’s theorem to obtain that w is

also in the convex hull of a subset of d + 1 points of the polygon. Furthermore,

the minimality of w implies that w must be on a face of the polygon and this

implies it can be represented as a convex combination of d points.

It remains to show that w is also the projection onto the polygon defined by the

d points. But this must be true: On one hand, the smaller polygon is a subset of

the larger one; hence the projection onto the smaller cannot be smaller in norm.

On the other hand, w itself is a valid solution. The uniqueness of projection

concludes our proof.

30.2.3 Separating Polynomials

Let X = Rd and consider the class x 7→ sign(p(x)) where p is a degree r polyno-

mial.

1 It can be shown that w is the direction of the max-margin solution.

414 Compression Bounds

Note that p(x) can be rewritten as 〈w, ψ(x)〉 where the elements of ψ(x) are all

the monomials of x up to degree r. Therefore, the problem of constructing a com-

pression scheme for p(x) reduces to the problem of constructing a compression

scheme for halfspaces in Rd′ where d′ = O(dr).

30.2.4 Separation with Margin

Suppose that a training set is separated with margin γ. The Perceptron algorithm

guarantees to make at most 1/γ2 updates before converging to a solution that

makes no mistakes on the entire training set. Hence, we have a compression

scheme of size k ≤ 1/γ2.

30.3 Bibliographic Remarks

Compression schemes and their relation to learning were introduced by Little-

stone & Warmuth (1986). As we have shown, if a class has a compression scheme

then it is learnable. For binary classification problems, it follows from the funda-

mental theorem of learning that the class has a finite VC dimension. The other

direction, namely, whether every hypothesis class of finite VC dimension has a

compression scheme of finite size, is an open problem posed by Manfred War-

muth and is still open (see also (Floyd 1989, Floyd & Warmuth 1995, Ben-David

& Litman 1998, Livni & Simon 2013).

31 PAC-Bayes

The Minimum Description Length (MDL) and Occam’s razor principles allow a

potentially very large hypothesis class but define a hierarchy over hypotheses and

prefer to choose hypotheses that appear higher in the hierarchy. In this chapter

we describe the PAC-Bayesian approach that further generalizes this idea. In

the PAC-Bayesian approach, one expresses the prior knowledge by defining prior

distribution over the hypothesis class.

31.1 PAC-Bayes Bounds

As in the MDL paradigm, we define a hierarchy over hypotheses in our class H.

Now, the hierarchy takes the form of a prior distribution over H. That is, we

assign a probability (or density if H is continuous) P (h) ≥ 0 for each h ∈ H
and refer to P (h) as the prior score of h. Following the Bayesian reasoning

approach, the output of the learning algorithm is not necessarily a single hy-

pothesis. Instead, the learning process defines a posterior probability over H,

which we denote by Q. In the context of a supervised learning problem, where

H contains functions from X to Y, one can think of Q as defining a randomized

prediction rule as follows. Whenever we get a new instance x, we randomly pick

a hypothesis h ∈ H according to Q and predict h(x). We define the loss of Q on

an example z to be

`(Q, z)
def
= E

h∼Q
[`(h, z)].

By the linearity of expectation, the generalization loss and training loss of Q can

be written as

LD(Q)
def
= E

h∼Q
[LD(h)] and LS(Q)

def
= E

h∼Q
[LS(h)].

The following theorem tells us that the difference between the generalization

loss and the empirical loss of a posterior Q is bounded by an expression that

depends on the Kullback-Leibler divergence between Q and the prior distribu-

tion P . The Kullback-Leibler is a natural measure of the distance between two

distributions. The theorem suggests that if we would like to minimize the gen-

eralization loss of Q, we should jointly minimize both the empirical loss of Q

and the Kullback-Leibler distance between Q and the prior distribution. We will

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

416 PAC-Bayes

later show how in some cases this idea leads to the regularized risk minimization

principle.

theorem 31.1 Let D be an arbitrary distribution over an example domain Z.

Let H be a hypothesis class and let ` : H×Z → [0, 1] be a loss function. Let P be

a prior distribution over H and let δ ∈ (0, 1). Then, with probability of at least

1− δ over the choice of an i.i.d. training set S = {z1, . . . , zm} sampled according

to D, for all distributions Q over H (even such that depend on S), we have

LD(Q) ≤ LS(Q) +

√
D(Q||P) + lnm/δ

2(m− 1)
,

where

D(Q||P)
def
= E

h∼Q
[ln(Q(h)/P (h))]

is the Kullback-Leibler divergence.

Proof For any function f(S), using Markov’s inequality:

P
S

[f(S) ≥ ε] = P
S

[ef(S) ≥ eε] ≤ ES [ef(S)]

eε
. (31.1)

Let ∆(h) = LD(h)− LS(h). We will apply Equation (31.1) with the function

f(S) = sup
Q

(
2(m− 1) E

h∼Q
(∆(h))2 −D(Q||P)

)
.

We now turn to bound ES [ef(S)]. The main trick is to upper bound f(S) by

using an expression that does not depend on Q but rather depends on the prior

probability P . To do so, fix some S and note that from the definition of D(Q||P)

we get that for all Q,

2(m− 1) E
h∼Q

(∆(h))2 −D(Q||P) = E
h∼Q

[ln(e2(m−1)∆(h)2P (h)/Q(h))]

≤ ln E
h∼Q

[e2(m−1)∆(h)2P (h)/Q(h)]

= ln E
h∼P

[e2(m−1)∆(h)2], (31.2)

where the inequality follows from Jensen’s inequality and the concavity of the

log function. Therefore,

E
S

[ef(S)] ≤ E
S

E
h∼P

[e2(m−1)∆(h)2]. (31.3)

The advantage of the expression on the right-hand side stems from the fact that

we can switch the order of expectations (because P is a prior that does not

depend on S), which yields

E
S

[ef(S)] ≤ E
h∼P

E
S

[e2(m−1)∆(h)2]. (31.4)

31.2 Bibliographic Remarks 417

Next, we claim that for all h we have ES [e2(m−1)∆(h)2] ≤ m. To do so, recall that

Hoeffding’s inequality tells us that

P
S

[∆(h) ≥ ε] ≤ e−2mε2 .

This implies that ES [e2(m−1)∆(h)2] ≤ m (see Exercise 1). Combining this with

Equation (31.4) and plugging into Equation (31.1) we get

P
S

[f(S) ≥ ε] ≤ m

eε
. (31.5)

Denote the right-hand side of the above δ, thus ε = ln(m/δ), and we therefore

obtain that with probability of at least 1− δ we have that for all Q

2(m− 1) E
h∼Q

(∆(h))2 −D(Q||P) ≤ ε = ln(m/δ).

Rearranging the inequality and using Jensen’s inequality again (the function x2

is convex) we conclude that(
E
h∼Q

∆(h)

)2

≤ E
h∼Q

(∆(h))2 ≤ ln(m/δ) +D(Q||P)

2(m− 1)
. (31.6)

Remark 31.1 (Regularization) The PAC-Bayes bound leads to the following

learning rule:

Given a prior P , return a posterior Q that minimizes the function

LS(Q) +

√
D(Q||P) + lnm/δ

2(m− 1)
. (31.7)

This rule is similar to the regularized risk minimization principle. That is, we

jointly minimize the empirical loss of Q on the sample and the Kullback-Leibler

“distance” between Q and P .

31.2 Bibliographic Remarks

PAC-Bayes bounds were first introduced by McAllester (1998). See also (McAllester

1999, McAllester 2003, Seeger 2003, Langford & Shawe-Taylor 2003, Langford

2006).

31.3 Exercises

1. Let X be a random variable that satisfies P[X ≥ ε] ≤ e−2mε2 . Prove that

E[e2(m−1)X2

] ≤ m.

418 PAC-Bayes

2. • Suppose that H is a finite hypothesis class, set the prior to be uniform over

H, and set the posterior to be Q(hS) = 1 for some hS and Q(h) = 0 for

all other h ∈ H. Show that

LD(hS) ≤ LS(h) +

√
ln(|H|) + ln(m/δ)

2(m− 1)
.

Compare to the bounds we derived using uniform convergence.

• Derive a bound similar to the Occam bound given in Chapter 7 using the

PAC-Bayes bound

Appendix A Technical Lemmas

lemma A.1 Let a > 0. Then: x ≥ 2a log(a) ⇒ x ≥ a log(x). It follows that a

necessary condition for the inequality x < a log(x) to hold is that x < 2a log(a).

Proof First note that for a ∈ (0,
√
e] the inequality x ≥ a log(x) holds uncon-

ditionally and therefore the claim is trivial. From now on, assume that a >
√
e.

Consider the function f(x) = x − a log(x). The derivative is f ′(x) = 1 − a/x.

Thus, for x > a the derivative is positive and the function increases. In addition,

f(2a log(a)) = 2a log(a)− a log(2a log(a))

= 2a log(a)− a log(a)− a log(2 log(a))

= a log(a)− a log(2 log(a)).

Since a− 2 log(a) > 0 for all a > 0, the proof follows.

lemma A.2 Let a ≥ 1 and b > 0. Then: x ≥ 4a log(2a)+2b ⇒ x ≥ a log(x)+b.

Proof It suffices to prove that x ≥ 4a log(2a) + 2b implies that both x ≥
2a log(x) and x ≥ 2b. Since we assume a ≥ 1 we clearly have that x ≥ 2b.

In addition, since b > 0 we have that x ≥ 4a log(2a) which using Lemma A.1

implies that x ≥ 2a log(x). This concludes our proof.

lemma A.3 Let X be a random variable and x′ ∈ R be a scalar and assume

that there exists a > 0 such that for all t ≥ 0 we have P[|X−x′| > t] ≤ 2e−t
2/a2 .

Then, E[|X − x′|] ≤ 4 a.

Proof For all i = 0, 1, 2, . . . denote ti = a i. Since ti is monotonically increasing

we have that E[|X − x′|] is at most
∑∞
i=1 ti P[|X − x′| > ti−1]. Combining this

with the assumption in the lemma we get that E[|X−x′|] ≤ 2 a
∑∞
i=1 ie

−(i−1)2 .

The proof now follows from the inequalities

∞∑
i=1

ie−(i−1)2 ≤
5∑
i=1

ie−(i−1)2 +

∫ ∞
5

xe−(x−1)2dx < 1.8 + 10−7 < 2 .

lemma A.4 Let X be a random variable and x′ ∈ R be a scalar and assume

that there exists a > 0 and b ≥ e such that for all t ≥ 0 we have P[|X − x′| >
t] ≤ 2b e−t

2/a2 . Then, E[|X − x′|] ≤ a(2 +
√

log(b)).

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

420 Technical Lemmas

Proof For all i = 0, 1, 2, . . . denote ti = a (i+
√

log(b)). Since ti is monotonically

increasing we have that

E[|X − x′|] ≤ a
√

log(b) +

∞∑
i=1

ti P[|X − x′| > ti−1].

Using the assumption in the lemma we have

∞∑
i=1

ti P[|X − x′| > ti−1] ≤ 2 a b

∞∑
i=1

(i+
√

log(b))e−(i−1+
√

log(b))2

≤ 2 a b

∫ ∞
1+
√

log(b)

xe−(x−1)2dx

= 2 a b

∫ ∞
√

log(b)

(y + 1)e−y
2

dy

≤ 4 a b

∫ ∞
√

log(b)

ye−y
2

dy

= 2 a b
[
−e−y

2
]∞
√

log(b)

= 2 a b/b = 2 a.

Combining the preceding inequalities we conclude our proof.

lemma A.5 Let m, d be two positive integers such that d ≤ m− 2. Then,

d∑
k=0

(
m

k

)
≤
(em
d

)d
.

Proof We prove the claim by induction. For d = 1 the left-hand side equals

1 +m while the right-hand side equals em; hence the claim is true. Assume that

the claim holds for d and let us prove it for d+ 1. By the induction assumption

we have

d+1∑
k=0

(
m

k

)
≤
(em
d

)d
+

(
m

d+ 1

)

=
(em
d

)d(
1 +

(
d

em

)d
m(m− 1)(m− 2) · · · (m− d)

(d+ 1)d!

)

≤
(em
d

)d(
1 +

(
d

e

)d
(m− d)

(d+ 1)d!

)
.

Technical Lemmas 421

Using Stirling’s approximation we further have that

≤
(em
d

)d(
1 +

(
d

e

)d
(m− d)

(d+ 1)
√

2πd(d/e)d

)

=
(em
d

)d(
1 +

m− d√
2πd(d+ 1)

)
=
(em
d

)d
· d+ 1 + (m− d)/

√
2πd

d+ 1

≤
(em
d

)d
· d+ 1 + (m− d)/2

d+ 1

=
(em
d

)d
· d/2 + 1 +m/2

d+ 1

≤
(em
d

)d
· m

d+ 1
,

where in the last inequality we used the assumption that d ≤ m − 2. On the

other hand, (
em

d+ 1

)d+1

=
(em
d

)d
· em

d+ 1
·
(

d

d+ 1

)d
=
(em
d

)d
· em

d+ 1
· 1

(1 + 1/d)d

≥
(em
d

)d
· em

d+ 1
· 1

e

=
(em
d

)d
· m

d+ 1
,

which proves our inductive argument.

lemma A.6 For all a ∈ R we have

ea + e−a

2
≤ ea

2/2.

Proof Observe that

ea =

∞∑
n=0

an

n!
.

Therefore,

ea + e−a

2
=

∞∑
n=0

a2n

(2n)!
,

and

ea
2/2 =

∞∑
n=0

a2n

2n n!
.

Observing that (2n)! ≥ 2n n! for every n ≥ 0 we conclude our proof.

Appendix B Measure Concentration

Let Z1, . . . , Zm be an i.i.d. sequence of random variables and let µ be their mean.

The strong law of large numbers states that when m tends to infinity, the em-

pirical average, 1
m

∑m
i=1 Zi, converges to the expected value µ, with probability

1. Measure concentration inequalities quantify the deviation of the empirical

average from the expectation when m is finite.

B.1 Markov’s Inequality

We start with an inequality which is called Markov’s inequality. Let Z be a

nonnegative random variable. The expectation of Z can be written as follows:

E[Z] =

∫ ∞
x=0

P[Z ≥ x]dx. (B.1)

Since P[Z ≥ x] is monotonically nonincreasing we obtain

∀a ≥ 0, E[Z] ≥
∫ a

x=0

P[Z ≥ x]dx ≥
∫ a

x=0

P[Z ≥ a]dx = a P[Z ≥ a]. (B.2)

Rearranging the inequality yields Markov’s inequality:

∀a ≥ 0, P[Z ≥ a] ≤ E[Z]

a
. (B.3)

For random variables that take value in [0, 1], we can derive from Markov’s

inequality the following.

lemma B.1 Let Z be a random variable that takes values in [0, 1]. Assume that

E[Z] = µ. Then, for any a ∈ (0, 1),

P[Z > 1− a] ≥ µ− (1− a)

a
.

This also implies that for every a ∈ (0, 1),

P[Z > a] ≥ µ− a
1− a

≥ µ− a.

Proof Let Y = 1 − Z. Then Y is a nonnegative random variable with E[Y] =

1− E[Z] = 1− µ. Applying Markov’s inequality on Y we obtain

P[Z ≤ 1− a] = P[1− Z ≥ a] = P[Y ≥ a] ≤ E[Y]

a
=

1− µ
a

.

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

B.2 Chebyshev’s Inequality 423

Therefore,

P[Z > 1− a] ≥ 1− 1− µ
a

=
a+ µ− 1

a
.

B.2 Chebyshev’s Inequality

Applying Markov’s inequality on the random variable (Z − E[Z])2 we obtain

Chebyshev’s inequality:

∀a > 0, P[|Z − E[Z]| ≥ a] = P[(Z − E[Z])2 ≥ a2] ≤ Var[Z]

a2
, (B.4)

where Var[Z] = E[(Z − E[Z])2] is the variance of Z.

Consider the random variable 1
m

∑m
i=1 Zi. Since Z1, . . . , Zm are i.i.d. it is easy

to verify that

Var

[
1

m

m∑
i=1

Zi

]
=

Var[Z1]

m
.

Applying Chebyshev’s inequality, we obtain the following:

lemma B.2 Let Z1, . . . , Zm be a sequence of i.i.d. random variables and assume

that E[Z1] = µ and Var[Z1] ≤ 1. Then, for any δ ∈ (0, 1), with probability of at

least 1− δ we have ∣∣∣∣∣ 1

m

m∑
i=1

Zi − µ

∣∣∣∣∣ ≤
√

1

δ m
.

Proof Applying Chebyshev’s inequality we obtain that for all a > 0

P

[∣∣∣∣∣ 1

m

m∑
i=1

Zi − µ

∣∣∣∣∣ > a

]
≤ Var[Z1]

ma2
≤ 1

ma2
.

The proof follows by denoting the right-hand side δ and solving for a.

The deviation between the empirical average and the mean given previously

decreases polynomially with m. It is possible to obtain a significantly faster

decrease. In the sections that follow we derive bounds that decrease exponentially

fast.

B.3 Chernoff’s Bounds

Let Z1, . . . , Zm be independent Bernoulli variables where for every i, P[Zi = 1] =

pi and P[Zi = 0] = 1 − pi. Let p =
∑m
i=1 pi and let Z =

∑m
i=1 Zi. Using the

424 Measure Concentration

monotonicity of the exponent function and Markov’s inequality, we have that for

every t > 0

P[Z > (1 + δ)p] = P[etZ > et(1+δ)p] ≤ E[etZ]

e(1+δ)tp
. (B.5)

Next,

E[etZ] = E[et
∑
i Zi] = E[

∏
i

etZi]

=
∏
i

E[etZi] by independence

=
∏
i

(
pie

t + (1− pi)e0
)

=
∏
i

(
1 + pi(e

t − 1)
)

≤
∏
i

epi(e
t−1) using 1 + x ≤ ex

= e
∑
i pi(e

t−1)

= e(et−1)p.

Combining the above with Equation (B.5) and choosing t = log(1+ δ) we obtain

lemma B.3 Let Z1, . . . , Zm be independent Bernoulli variables where for every

i, P[Zi = 1] = pi and P[Zi = 0] = 1− pi. Let p =
∑m
i=1 pi and let Z =

∑m
i=1 Zi.

Then, for any δ > 0,

P[Z > (1 + δ)p] ≤ e−h(δ) p,

where

h(δ) = (1 + δ) log(1 + δ)− δ.

Using the inequality h(a) ≥ a2/(2 + 2a/3) we obtain

lemma B.4 Using the notation of Lemma B.3 we also have

P[Z > (1 + δ)p] ≤ e−p
δ2

2+2δ/3 .

For the other direction, we apply similar calculations:

P[Z < (1−δ)p] = P[−Z > −(1−δ)p] = P[e−tZ > e−t(1−δ)p] ≤ E[e−tZ]

e−(1−δ)tp , (B.6)

B.4 Hoeffding’s Inequality 425

and,

E[e−tZ] = E[e−t
∑
i Zi] = E[

∏
i

e−tZi]

=
∏
i

E[e−tZi] by independence

=
∏
i

(
1 + pi(e

−t − 1)
)

≤
∏
i

epi(e
−t−1) using 1 + x ≤ ex

= e(e−t−1)p.

Setting t = − log(1− δ) yields

P[Z < (1− δ)p] ≤ e−δp

e(1−δ) log(1−δ) p = e−ph(−δ).

It is easy to verify that h(−δ) ≥ h(δ) and hence

lemma B.5 Using the notation of Lemma B.3 we also have

P[Z < (1− δ)p] ≤ e−ph(−δ) ≤ e−ph(δ) ≤ e−p
δ2

2+2δ/3 .

B.4 Hoeffding’s Inequality

lemma B.6 (Hoeffding’s inequality) Let Z1, . . . , Zm be a sequence of i.i.d.

random variables and let Z̄ = 1
m

∑m
i=1 Zi. Assume that E[Z̄] = µ and P[a ≤

Zi ≤ b] = 1 for every i. Then, for any ε > 0

P

[∣∣∣∣∣ 1
m

m∑
i=1

Zi − µ

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2mε2/(b− a)2

)
.

Proof Denote Xi = Zi − E[Zi] and X̄ = 1
m

∑
iXi. Using the monotonicity of

the exponent function and Markov’s inequality, we have that for every λ > 0

and ε > 0,

P[X̄ ≥ ε] = P[eλX̄ ≥ eλε] ≤ e−λε E[eλX̄].

Using the independence assumption we also have

E[eλX̄] = E

[∏
i

eλXi/m

]
=
∏
i

E[eλXi/m].

By Hoeffding’s lemma (Lemma B.7 later), for every i we have

E[eλXi/m] ≤ e
λ2(b−a)2

8m2 .

426 Measure Concentration

Therefore,

P[X̄ ≥ ε] ≤ e−λε
∏
i

e
λ2(b−a)2

8m2 = e−λε+
λ2(b−a)2

8m .

Setting λ = 4mε/(b− a)2 we obtain

P[X̄ ≥ ε] ≤ e−
2mε2

(b−a)2 .

Applying the same arguments on the variable −X̄ we obtain that P[X̄ ≤ −ε] ≤

e
− 2mε2

(b−a)2 . The theorem follows by applying the union bound on the two cases.

lemma B.7 (Hoeffding’s lemma) Let X be a random variable that takes values

in the interval [a, b] and such that E[X] = 0. Then, for every λ > 0,

E[eλX] ≤ e
λ2(b−a)2

8 .

Proof Since f(x) = eλx is a convex function, we have that for every α ∈ (0, 1),

and x ∈ [a, b],

f(x) ≤ αf(a) + (1− α)f(b).

Setting α = b−x
b−a ∈ [0, 1] yields

eλx ≤ b− x
b− a

eλa +
x− a
b− a

eλb.

Taking the expectation, we obtain that

E[eλX] ≤ b− E[X]

b− a
eλa +

E[x]− a
b− a

eλb =
b

b− a
eλa − a

b− a
eλb,

where we used the fact that E[X] = 0. Denote h = λ(b − a), p = −a
b−a , and

L(h) = −hp + log(1 − p + peh). Then, the expression on the right-hand side of

the above can be rewritten as eL(h). Therefore, to conclude our proof it suffices

to show that L(h) ≤ h2

8 . This follows from Taylor’s theorem using the facts:

L(0) = L′(0) = 0 and L′′(h) ≤ 1/4 for all h.

B.5 Bennet’s and Bernstein’s Inequalities

Bennet’s and Bernsein’s inequalities are similar to Chernoff’s bounds, but they

hold for any sequence of independent random variables. We state the inequalities

without proof, which can be found, for example, in Cesa-Bianchi & Lugosi (2006).

lemma B.8 (Bennet’s inequality) Let Z1, . . . , Zm be independent random vari-

ables with zero mean, and assume that Zi ≤ 1 with probability 1. Let

σ2 ≥ 1

m

m∑
i=1

E[Z2
i].

B.5 Bennet’s and Bernstein’s Inequalities 427

Then for all ε > 0,

P

[
m∑
i=1

Zi > ε

]
≤ e−mσ

2h(ε
mσ2).

where

h(a) = (1 + a) log(1 + a)− a.

By using the inequality h(a) ≥ a2/(2 + 2a/3) it is possible to derive the

following:

lemma B.9 (Bernstein’s inequality) Let Z1, . . . , Zm be i.i.d. random variables

with a zero mean. If for all i, P(|Zi| < M) = 1, then for all t > 0 :

P

[
m∑
i=1

Zi > t

]
≤ exp

(
− t2/2∑

EZ2
j +Mt/3

)
.

B.5.1 Application

Bernstein’s inequality can be used to interpolate between the rate 1/ε we derived

for PAC learning in the realizable case (in Chapter 2) and the rate 1/ε2 we derived

for the unrealizable case (in Chapter 4).

lemma B.10 Let ` : H × Z → [0, 1] be a loss function. Let D be an arbitrary

distribution over Z. Fix some h. Then, for any δ ∈ (0, 1) we have

1. P
S∼Dm

[
LS(h) ≥ LD(h) +

√
2LD(h) log(1/δ)

3m
+

2 log(1/δ)

m

]
≤ δ

2. P
S∼Dm

[
LD(h) ≥ LS(h) +

√
2LS(h) log(1/δ)

m
+

4 log(1/δ)

m

]
≤ δ

Proof Define random variables α1, . . . , αm s.t. αi = `(h, zi)−LD(h). Note that

E[αi] = 0 and that

E[α2
i] = E[`(h, zi)

2]− 2LD(h)E[`(h, zi)] + LD(h)2

= E[`(h, zi)
2]− LD(h)2

≤ E[`(h, zi)
2]

≤ E[`(h, zi)] = LD(h),

where in the last inequality we used the fact that `(h, zi) ∈ [0, 1] and thus

`(h, zi)
2 ≤ `(h, zi). Applying Bernsein’s inequality over the αi’s yields

P

[
m∑
i=1

αi > t

]
≤ exp

(
− t2/2∑

Eα2
j + t/3

)

≤ exp

(
− t2/2

mLD(h) + t/3

)
def
= δ.

428 Measure Concentration

Solving for t yields

t2/2

mLD(h) + t/3
= log(1/δ)

⇒ t2/2− log(1/δ)

3
t− log(1/δ)mLD(h) = 0

⇒ t =
log(1/δ)

3
+

√
log2(1/δ)

32
+ 2 log(1/δ)mLD(h)

≤ 2
log(1/δ)

3
+
√

2 log(1/δ)mLD(h)

Since 1
m

∑
i αi = LS(h)−LD(h), it follows that with probability of at least 1−δ,

LS(h)− LD(h) ≤ 2
log(1/δ)

3m
+

√
2 log(1/δ)LD(h)

m
,

which proves the first inequality. The second part of the lemma follows in a

similar way.

B.6 Slud’s Inequality

Let X be a (m, p) binomial variable. That is, X =
∑m
i=1 Zi, where each Zi is 1

with probability p and 0 with probability 1−p. Assume that p = (1−ε)/2. Slud’s

inequality (Slud 1977) tells us that P[X ≥ m/2] is lower bounded by the proba-

bility that a normal variable will be greater than or equal to
√
mε2/(1− ε2). The

following lemma follows by standard tail bounds for the normal distribution.

lemma B.11 Let X be a (m, p) binomial variable and assume that p = (1−ε)/2.

Then,

P[X ≥ m/2] ≥ 1

2

(
1−

√
1− exp(−mε2/(1− ε2))

)
.

B.7 Concentration of χ2 Variables

Let X1, . . . , Xk be k independent normally distributed random variables. That

is, for all i, Xi ∼ N(0, 1). The distribution of the random variable X2
i is called

χ2 (chi square) and the distribution of the random variable Z = X2
1 + · · ·+X2

k

is called χ2
k (chi square with k degrees of freedom). Clearly, E[X2

i] = 1 and

E[Z] = k. The following lemma states that X2
k is concentrated around its mean.

lemma B.12 Let Z ∼ χ2
k. Then, for all ε > 0 we have

P[Z ≤ (1− ε)k] ≤ e−ε
2k/6,

and for all ε ∈ (0, 3) we have

P[Z ≥ (1 + ε)k] ≤ e−ε
2k/6.

B.7 Concentration of χ2 Variables 429

Finally, for all ε ∈ (0, 3),

P [(1− ε)k ≤ Z ≤ (1 + ε)k] ≥ 1− 2e−ε
2k/6.

Proof Let us write Z =
∑k
i=1X

2
i where Xi ∼ N(0, 1). To prove both bounds

we use Chernoff’s bounding method. For the first inequality, we first bound

E[e−λX
2
1], where λ > 0 will be specified later. Since e−a ≤ 1−a+ a2

2 for all a ≥ 0

we have that

E[e−λX
2
1] ≤ 1− λE[X2

1] +
λ2

2
E[X4

1].

Using the well known equalities, E[X2
1] = 1 and E[X4

1] = 3, and the fact that

1− a ≤ e−a we obtain that

E[e−λX
2
1] ≤ 1− λ+ 3

2λ
2 ≤ e−λ+ 3

2λ
2

.

Now, applying Chernoff’s bounding method we get that

P[−Z ≥ −(1− ε)k] = P
[
e−λZ ≥ e−(1−ε)kλ

]
≤ e(1−ε)kλ E

[
e−λZ

]
= e(1−ε)kλ

(
E
[
e−λX

2
1

])k
≤ e(1−ε)kλ e−λk+ 3

2λ
2k

= e−εkλ+
3
2kλ

2

.

Choose λ = ε/3 we obtain the first inequality stated in the lemma.

For the second inequality, we use a known closed form expression for the

moment generating function of a χ2
k distributed random variable:

∀λ < 1
2 , E

[
eλZ

2
]

= (1− 2λ)−k/2. (B.7)

On the basis of the equation and using Chernoff’s bounding method we have

P[Z ≥ (1 + ε)k)] = P
[
eλZ ≥ e(1+ε)kλ

]
≤ e−(1+ε)kλ E

[
eλZ

]
= e−(1+ε)kλ (1− 2λ)

−k/2

≤ e−(1+ε)kλ ekλ = e−εkλ,

where the last inequality occurs because (1 − a) ≤ e−a. Setting λ = ε/6 (which

is in (0, 1/2) by our assumption) we obtain the second inequality stated in the

lemma.

Finally, the last inequality follows from the first two inequalities and the union

bound.

Appendix C Linear Algebra

C.1 Basic Definitions

In this chapter we only deal with linear algebra over finite dimensional Euclidean

spaces. We refer to vectors as column vectors.

Given two d dimensional vectors u,v ∈ Rd, their inner product is

〈u,v〉 =

d∑
i=1

uivi.

The Euclidean norm (a.k.a. the `2 norm) is ‖u‖ =
√
〈u,u〉. We also use the `1

norm, ‖u‖1 =
∑d
i=1 |ui| and the `∞ norm ‖u‖∞ = maxi |ui|.

A subspace of Rd is a subset of Rd which is closed under addition and scalar

multiplication. The span of a set of vectors u1, . . . ,uk is the subspace containing

all vectors of the form

k∑
i=1

αiui

where for all i, αi ∈ R.

A set of vectors U = {u1, . . . ,uk} is independent if for every i, ui is not in the

span of u1, . . . ,ui−1,ui+1, . . . ,uk. We say that U spans a subspace V if V is the

span of the vectors in U . We say that U is a basis of V if it is both independent

and spans V. The dimension of V is the size of a basis of V (and it can be verified

that all bases of V have the same size). We say that U is an orthogonal set if for

all i 6= j, 〈ui,uj〉 = 0. We say that U is an orthonormal set if it is orthogonal

and if for every i, ‖ui‖ = 1.

Given a matrix A ∈ Rn,d, the range of A is the span of its columns and the

null space of A is the subspace of all vectors that satisfy Au = 0. The rank of A

is the dimension of its range.

The transpose of a matrix A, denoted A>, is the matrix whose (i, j) entry

equals the (j, i) entry of A. We say that A is symmetric if A = A>.

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

C.2 Eigenvalues and Eigenvectors 431

C.2 Eigenvalues and Eigenvectors

Let A ∈ Rd,d be a matrix. A non-zero vector u is an eigenvector of A with a

corresponding eigenvalue λ if

Au = λu.

theorem C.1 (Spectral Decomposition) If A ∈ Rd,d is a symmetric matrix of

rank k, then there exists an orthonormal basis of Rd, u1, . . . ,ud, such that each

ui is an eigenvector of A. Furthermore, A can be written as A =
∑d
i=1 λiuiu

>
i ,

where each λi is the eigenvalue corresponding to the eigenvector ui. This can

be written equivalently as A = UDU>, where the columns of U are the vectors

u1, . . . ,ud, and D is a diagonal matrix with Di,i = λi and for i 6= j, Di,j =

0. Finally, the number of λi which are nonzero is the rank of the matrix, the

eigenvectors which correspond to the nonzero eigenvalues span the range of A,

and the eigenvectors which correspond to zero eigenvalues span the null space of

A.

C.3 Positive definite matrices

A symmetric matrix A ∈ Rd,d is positive definite if all its eigenvalues are positive.

A is positive semidefinite if all its eigenvalues are nonnegative.

theorem C.2 Let A ∈ Rd,d be a symmetric matrix. Then, the following are

equivalent definitions of positive semidefiniteness of A:

• All the eigenvalues of A are nonnegative.

• For every vector u, 〈u, Au〉 ≥ 0.

• There exists a matrix B such that A = BB>.

C.4 Singular Value Decomposition (SVD)

Let A ∈ Rm,n be a matrix of rank r. When m 6= n, the eigenvalue decomposition

given in Theorem C.1 cannot be applied. We will describe another decomposition

of A, which is called Singular Value Decomposition, or SVD for short.

Unit vectors v ∈ Rn and u ∈ Rm are called right and left singular vectors of

A with corresponding singular value σ > 0 if

Av = σu and A>u = σv.

We first show that if we can find r orthonormal singular vectors with positive

singular values, then we can decompose A = UDV >, with the columns of U and

V containing the left and right singular vectors, and D being a diagonal r × r
matrix with the singular values on its diagonal.

432 Linear Algebra

lemma C.3 Let A ∈ Rm,n be a matrix of rank r. Assume that v1, . . . ,vr is an

orthonormal set of right singular vectors of A, u1, . . . ,ur is an orthonormal set

of corresponding left singular vectors of A, and σ1, . . . , σr are the corresponding

singular values. Then,

A =

r∑
i=1

σiuiv
>
i .

It follows that if U is a matrix whose columns are the ui’s, V is a matrix whose

columns are the vi’s, and D is a diagonal matrix with Di,i = σi, then

A = UDV >.

Proof Any right singular vector of A must be in the range of A> (otherwise,

the singular value will have to be zero). Therefore, v1, . . . ,vr is an orthonormal

basis of the range of A. Let us complete it to an orthonormal basis of Rn by

adding the vectors vr+1, . . . ,vn. Define B =
∑r
i=1 σiuiv

>
i . It suffices to prove

that for all i, Avi = Bvi. Clearly, if i > r then Avi = 0 and Bvi = 0 as well.

For i ≤ r we have

Bvi =

r∑
j=1

σjujv
>
j vi = σiui = Avi,

where the last equality follows from the definition.

The next lemma relates the singular values of A to the eigenvalues of A>A

and AA>.

lemma C.4 v,u are right and left singular vectors of A with singular value σ

iff v is an eigenvector of A>A with corresponding eigenvalue σ2 and u = σ−1Av

is an eigenvector of AA> with corresponding eigenvalue σ2.

Proof Suppose that σ is a singular value of A with v ∈ Rn being the corre-

sponding right singular vector. Then,

A>Av = σA>u = σ2v.

Similarly,

AA>u = σAv = σ2u.

For the other direction, if λ 6= 0 is an eigenvalue of A>A, with v being the

corresponding eigenvector, then λ > 0 because A>A is positive semidefinite. Let

σ =
√
λ,u = σ−1Av. Then,

σu =
√
λ
Av√
λ

= Av,

and

A>u =
1

σ
A>Av =

λ

σ
v = σv.

C.4 Singular Value Decomposition (SVD) 433

Finally, we show that if A has rank r then it has r orthonormal singular

vectors.

lemma C.5 Let A ∈ Rm,n with rank r. Define the following vectors:

v1 = argmax
v∈Rn:‖v‖=1

‖Av‖

v2 = argmax
v∈Rn:‖v‖=1
〈v,v1〉=0

‖Av‖

...

vr = argmax
v∈Rn:‖v‖=1
∀i<r, 〈v,vi〉=0

‖Av‖

Then, v1, . . . ,vr is an orthonormal set of right singular vectors of A.

Proof First note that since the rank of A is r, the range of A is a subspace of

dimension r, and therefore it is easy to verify that for all i = 1, . . . , r, ‖Avi‖ > 0.

Let W ∈ Rn,n be an orthonormal matrix obtained by the eigenvalue decompo-

sition of A>A, namely, A>A = WDW>, with D being a diagonal matrix with

D1,1 ≥ D2,2 ≥ · · · ≥ 0. We will show that v1, . . . ,vr are eigenvectors of A>A

that correspond to nonzero eigenvalues, and, hence, using Lemma C.4 it follows

that these are also right singular vectors of A. The proof is by induction. For the

basis of the induction, note that any unit vector v can be written as v = Wx,

for x = W>v, and note that ‖x‖ = 1. Therefore,

‖Av‖2 = ‖AWx‖2 = ‖WDW>Wx‖2 = ‖WDx‖2 = ‖Dx‖2 =

n∑
i=1

D2
i,ixi

2.

Therefore,

max
v:‖v‖=1

‖Av‖2 = max
x:‖x‖=1

n∑
i=1

D2
i,ixi

2.

The solution of the right-hand side is to set x = (1, 0, . . . , 0), which implies that

v1 is the first eigenvector of A>A. Since ‖Av1‖ > 0 it follows that D1,1 > 0 as

required. For the induction step, assume that the claim holds for some 1 ≤ t ≤
r − 1. Then, any v which is orthogonal to v1, . . . ,vt can be written as v = Wx

with all the first t elements of x being zero. It follows that

max
v:‖v‖=1,∀i≤t,v>vi=0

‖Av‖2 = max
x:‖x‖=1

n∑
i=t+1

D2
i,ixi

2.

The solution of the right-hand side is the all zeros vector except xt+1 = 1. This

implies that vt+1 is the (t + 1)th column of W . Finally, since ‖Avt+1‖ > 0 it

follows that Dt+1,t+1 > 0 as required. This concludes our proof.

434 Linear Algebra

corollary C.6 (The SVD theorem) Let A ∈ Rm,n with rank r. Then A =

UDV > where D is an r × r matrix with nonzero singular values of A and the

columns of U, V are orthonormal left and right singular vectors of A. Further-

more, for all i, D2
i,i is an eigenvalue of A>A, the ith column of V is the cor-

responding eigenvector of A>A and the ith column of U is the corresponding

eigenvector of AA>.

Notes

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

References

Abernethy, J., Bartlett, P. L., Rakhlin, A. & Tewari, A. (2008), Optimal strategies and

minimax lower bounds for online convex games, in ‘Proceedings of the Nineteenth

Annual Conference on Computational Learning Theory’.

Ackerman, M. & Ben-David, S. (2008), Measures of clustering quality: A working set

of axioms for clustering, in ‘Proceedings of Neural Information Processing Systems

(NIPS)’, pp. 121–128.

Agarwal, S. & Roth, D. (2005), Learnability of bipartite ranking functions, in ‘Pro-

ceedings of the 18th Annual Conference on Learning Theory’, pp. 16–31.

Agmon, S. (1954), ‘The relaxation method for linear inequalities’, Canadian Journal

of Mathematics 6(3), 382–392.

Aizerman, M. A., Braverman, E. M. & Rozonoer, L. I. (1964), ‘Theoretical foundations

of the potential function method in pattern recognition learning’, Automation and

Remote Control 25, 821–837.

Allwein, E. L., Schapire, R. & Singer, Y. (2000), ‘Reducing multiclass to binary: A uni-

fying approach for margin classifiers’, Journal of Machine Learning Research 1, 113–

141.

Alon, N., Ben-David, S., Cesa-Bianchi, N. & Haussler, D. (1997), ‘Scale-sensitive dimen-

sions, uniform convergence, and learnability’, Journal of the ACM 44(4), 615–631.

Anthony, M. & Bartlet, P. (1999), Neural Network Learning: Theoretical Foundations,

Cambridge University Press.

Baraniuk, R., Davenport, M., DeVore, R. & Wakin, M. (2008), ‘A simple proof of

the restricted isometry property for random matrices’, Constructive Approximation

28(3), 253–263.

Barber, D. (2012), Bayesian reasoning and machine learning, Cambridge University

Press.

Bartlett, P., Bousquet, O. & Mendelson, S. (2005), ‘Local rademacher complexities’,

Annals of Statistics 33(4), 1497–1537.

Bartlett, P. L. & Ben-David, S. (2002), ‘Hardness results for neural network approxi-

mation problems’, Theor. Comput. Sci. 284(1), 53–66.

Bartlett, P. L., Long, P. M. & Williamson, R. C. (1994), Fat-shattering and the learn-

ability of real-valued functions, in ‘Proceedings of the seventh annual conference on

Computational learning theory’, ACM, pp. 299–310.

Bartlett, P. L. & Mendelson, S. (2001), Rademacher and Gaussian complexities: Risk

bounds and structural results, in ‘14th Annual Conference on Computational Learn-

ing Theory, COLT 2001’, Vol. 2111, Springer, Berlin, pp. 224–240.

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

438 References

Bartlett, P. L. & Mendelson, S. (2002), ‘Rademacher and Gaussian complexities: Risk

bounds and structural results’, Journal of Machine Learning Research 3, 463–482.

Ben-David, S., Cesa-Bianchi, N., Haussler, D. & Long, P. (1995), ‘Characterizations

of learnability for classes of {0, . . . , n}-valued functions’, Journal of Computer and

System Sciences 50, 74–86.

Ben-David, S., Eiron, N. & Long, P. (2003), ‘On the difficulty of approximately maxi-

mizing agreements’, Journal of Computer and System Sciences 66(3), 496–514.

Ben-David, S. & Litman, A. (1998), ‘Combinatorial variability of vapnik-chervonenkis

classes with applications to sample compression schemes’, Discrete Applied Mathe-

matics 86(1), 3–25.

Ben-David, S., Pal, D., & Shalev-Shwartz, S. (2009), Agnostic online learning, in ‘Con-

ference on Learning Theory (COLT)’.

Ben-David, S. & Simon, H. (2001), ‘Efficient learning of linear perceptrons’, Advances

in Neural Information Processing Systems pp. 189–195.

Bengio, Y. (2009), ‘Learning deep architectures for AI’, Foundations and Trends in

Machine Learning 2(1), 1–127.

Bengio, Y. & LeCun, Y. (2007), ‘Scaling learning algorithms towards ai’, Large-Scale

Kernel Machines 34.

Bertsekas, D. (1999), Nonlinear Programming, Athena Scientific.

Beygelzimer, A., Langford, J. & Ravikumar, P. (2007), ‘Multiclass classification with

filter trees’, Preprint, June .

Birkhoff, G. (1946), ‘Three observations on linear algebra’, Revi. Univ. Nac. Tucuman,

ser A 5, 147–151.

Bishop, C. M. (2006), Pattern recognition and machine learning, Vol. 1, springer New

York.

Blum, L., Shub, M. & Smale, S. (1989), ‘On a theory of computation and complexity

over the real numbers: Np-completeness, recursive functions and universal machines’,

Am. Math. Soc 21(1), 1–46.

Blumer, A., Ehrenfeucht, A., Haussler, D. & Warmuth, M. K. (1987), ‘Occam’s razor’,

Information Processing Letters 24(6), 377–380.

Blumer, A., Ehrenfeucht, A., Haussler, D. & Warmuth, M. K. (1989), ‘Learnability

and the Vapnik-Chervonenkis dimension’, Journal of the Association for Computing

Machinery 36(4), 929–965.

Borwein, J. & Lewis, A. (2006), Convex Analysis and Nonlinear Optimization, Springer.

Boser, B. E., Guyon, I. M. & Vapnik, V. N. (1992), A training algorithm for optimal

margin classifiers, in ‘Conference on Learning Theory (COLT)’, pp. 144–152.

Bottou, L. & Bousquet, O. (2008), The tradeoffs of large scale learning, in ‘NIPS’,

pp. 161–168.

Boucheron, S., Bousquet, O. & Lugosi, G. (2005), ‘Theory of classification: a survey of

recent advances’, ESAIM: Probability and Statistics 9, 323–375.

Bousquet, O. (2002), Concentration Inequalities and Empirical Processes Theory Ap-

plied to the Analysis of Learning Algorithms, PhD thesis, Ecole Polytechnique.

Bousquet, O. & Elisseeff, A. (2002), ‘Stability and generalization’, Journal of Machine

Learning Research 2, 499–526.

Boyd, S. & Vandenberghe, L. (2004), Convex Optimization, Cambridge University

Press.

References 439

Breiman, L. (1996), Bias, variance, and arcing classifiers, Technical Report 460, Statis-

tics Department, University of California at Berkeley.

Breiman, L. (2001), ‘Random forests’, Machine learning 45(1), 5–32.

Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1984), Classification and

Regression Trees, Wadsworth & Brooks.

Candès, E. (2008), ‘The restricted isometry property and its implications for com-

pressed sensing’, Comptes Rendus Mathematique 346(9), 589–592.

Candes, E. J. (2006), Compressive sampling, in ‘Proc. of the Int. Congress of Math.,

Madrid, Spain’.

Candes, E. & Tao, T. (2005), ‘Decoding by linear programming’, IEEE Trans. on

Information Theory 51, 4203–4215.

Cesa-Bianchi, N. & Lugosi, G. (2006), Prediction, learning, and games, Cambridge

University Press.

Chang, H. S., Weiss, Y. & Freeman, W. T. (2009), ‘Informative sensing’, arXiv preprint

arXiv:0901.4275 .

Chapelle, O., Le, Q. & Smola, A. (2007), Large margin optimization of ranking mea-

sures, in ‘NIPS Workshop: Machine Learning for Web Search’.

Collins, M. (2000), Discriminative reranking for natural language parsing, in ‘Machine

Learning’.

Collins, M. (2002), Discriminative training methods for hidden Markov models: Theory

and experiments with perceptron algorithms, in ‘Conference on Empirical Methods

in Natural Language Processing’.

Collobert, R. & Weston, J. (2008), A unified architecture for natural language process-

ing: deep neural networks with multitask learning, in ‘International Conference on

Machine Learning (ICML)’.

Cortes, C. & Vapnik, V. (1995), ‘Support-vector networks’, Machine Learning

20(3), 273–297.

Cover, T. (1965), ‘Behavior of sequential predictors of binary sequences’, Trans. 4th

Prague Conf. Information Theory Statistical Decision Functions, Random Processes

pp. 263–272.

Cover, T. & Hart, P. (1967), ‘Nearest neighbor pattern classification’, Information

Theory, IEEE Transactions on 13(1), 21–27.

Crammer, K. & Singer, Y. (2001), ‘On the algorithmic implementation of multiclass

kernel-based vector machines’, Journal of Machine Learning Research 2, 265–292.

Cristianini, N. & Shawe-Taylor, J. (2000), An Introduction to Support Vector Machines,

Cambridge University Press.

Daniely, A., Sabato, S., Ben-David, S. & Shalev-Shwartz, S. (2011), Multiclass learn-

ability and the erm principle, in ‘Conference on Learning Theory (COLT)’.

Daniely, A., Sabato, S. & Shwartz, S. S. (2012), Multiclass learning approaches: A

theoretical comparison with implications, in ‘NIPS’.

Davis, G., Mallat, S. & Avellaneda, M. (1997), ‘Greedy adaptive approximation’, Jour-

nal of Constructive Approximation 13, 57–98.

Devroye, L. & Györfi, L. (1985), Nonparametric Density Estimation: The L B1 S View,

Wiley.

Devroye, L., Györfi, L. & Lugosi, G. (1996), A Probabilistic Theory of Pattern Recog-

nition, Springer.

440 References

Dietterich, T. G. & Bakiri, G. (1995), ‘Solving multiclass learning problems via error-

correcting output codes’, Journal of Artificial Intelligence Research 2, 263–286.

Donoho, D. L. (2006), ‘Compressed sensing’, Information Theory, IEEE Transactions

on 52(4), 1289–1306.

Dudley, R., Gine, E. & Zinn, J. (1991), ‘Uniform and universal glivenko-cantelli classes’,

Journal of Theoretical Probability 4(3), 485–510.

Dudley, R. M. (1987), ‘Universal Donsker classes and metric entropy’, Annals of Prob-

ability 15(4), 1306–1326.

Fisher, R. A. (1922), ‘On the mathematical foundations of theoretical statistics’, Philo-

sophical Transactions of the Royal Society of London. Series A, Containing Papers

of a Mathematical or Physical Character 222, 309–368.

Floyd, S. (1989), Space-bounded learning and the Vapnik-Chervonenkis dimension, in

‘Conference on Learning Theory (COLT)’, pp. 349–364.

Floyd, S. & Warmuth, M. (1995), ‘Sample compression, learnability, and the Vapnik-

Chervonenkis dimension’, Machine Learning 21(3), 269–304.

Frank, M. & Wolfe, P. (1956), ‘An algorithm for quadratic programming’, Naval Res.

Logist. Quart. 3, 95–110.

Freund, Y. & Schapire, R. (1995), A decision-theoretic generalization of on-line learning

and an application to boosting, in ‘European Conference on Computational Learning

Theory (EuroCOLT)’, Springer-Verlag, pp. 23–37.

Freund, Y. & Schapire, R. E. (1999), ‘Large margin classification using the perceptron

algorithm’, Machine Learning 37(3), 277–296.

Garcia, J. & Koelling, R. (1996), ‘Relation of cue to consequence in avoidance learning’,

Foundations of animal behavior: classic papers with commentaries 4, 374.

Gentile, C. (2003), ‘The robustness of the p-norm algorithms’, Machine Learning

53(3), 265–299.

Georghiades, A., Belhumeur, P. & Kriegman, D. (2001), ‘From few to many: Illumina-

tion cone models for face recognition under variable lighting and pose’, IEEE Trans.

Pattern Anal. Mach. Intelligence 23(6), 643–660.

Gordon, G. (1999), Regret bounds for prediction problems, in ‘Conference on Learning

Theory (COLT)’.

Gottlieb, L.-A., Kontorovich, L. & Krauthgamer, R. (2010), Efficient classification for

metric data, in ‘23rd Conference on Learning Theory’, pp. 433–440.

Guyon, I. & Elisseeff, A. (2003), ‘An introduction to variable and feature selection’,

Journal of Machine Learning Research, Special Issue on Variable and Feature Selec-

tion 3, 1157–1182.

Hadamard, J. (1902), ‘Sur les problèmes aux dérivées partielles et leur signification

physique’, Princeton University Bulletin 13, 49–52.

Hastie, T., Tibshirani, R. & Friedman, J. (2001), The Elements of Statistical Learning,

Springer.

Haussler, D. (1992), ‘Decision theoretic generalizations of the PAC model for neural

net and other learning applications’, Information and Computation 100(1), 78–150.

Haussler, D. & Long, P. M. (1995), ‘A generalization of sauer’s lemma’, Journal of

Combinatorial Theory, Series A 71(2), 219–240.

Hazan, E., Agarwal, A. & Kale, S. (2007), ‘Logarithmic regret algorithms for online

convex optimization’, Machine Learning 69(2–3), 169–192.

References 441

Hinton, G. E., Osindero, S. & Teh, Y.-W. (2006), ‘A fast learning algorithm for deep

belief nets’, Neural Computation 18(7), 1527–1554.

Hiriart-Urruty, J.-B. & Lemaréchal, C. (1996), Convex Analysis and Minimization Al-

gorithms: Part 1: Fundamentals, Vol. 1, Springer.

Hsu, C.-W., Chang, C.-C. & Lin, C.-J. (2003), ‘A practical guide to support vector

classification’.

Hyafil, L. & Rivest, R. L. (1976), ‘Constructing optimal binary decision trees is NP-

complete’, Information Processing Letters 5(1), 15–17.

Joachims, T. (2005), A support vector method for multivariate performance measures,

in ‘Proceedings of the International Conference on Machine Learning (ICML)’.

Kakade, S., Sridharan, K. & Tewari, A. (2008), On the complexity of linear prediction:

Risk bounds, margin bounds, and regularization, in ‘NIPS’.

Karp, R. M. (1972), Reducibility among combinatorial problems, Springer.

Kearns, M. J., Schapire, R. E. & Sellie, L. M. (1994), ‘Toward efficient agnostic learn-

ing’, Machine Learning 17, 115–141.

Kearns, M. & Mansour, Y. (1996), On the boosting ability of top-down decision tree

learning algorithms, in ‘ACM Symposium on the Theory of Computing (STOC)’.

Kearns, M. & Ron, D. (1999), ‘Algorithmic stability and sanity-check bounds for leave-

one-out cross-validation’, Neural Computation 11(6), 1427–1453.

Kearns, M. & Valiant, L. G. (1988), Learning Boolean formulae or finite automata is

as hard as factoring, Technical Report TR-14-88, Harvard University Aiken Compu-

tation Laboratory.

Kearns, M. & Vazirani, U. (1994), An Introduction to Computational Learning Theory,

MIT Press.

Kleinberg, J. (2003), ‘An impossibility theorem for clustering’, Advances in Neural

Information Processing Systems pp. 463–470.

Klivans, A. R. & Sherstov, A. A. (2006), Cryptographic hardness for learning intersec-

tions of halfspaces, in ‘FOCS’.

Koller, D. & Friedman, N. (2009), Probabilistic Graphical Models: Principles and Tech-

niques, MIT Press.

Koltchinskii, V. & Panchenko, D. (2000), Rademacher processes and bounding the risk

of function learning, in ‘High Dimensional Probability II’, Springer, pp. 443–457.

Kuhn, H. W. (1955), ‘The hungarian method for the assignment problem’, Naval re-

search logistics quarterly 2(1-2), 83–97.

Kutin, S. & Niyogi, P. (2002), Almost-everywhere algorithmic stability and general-

ization error, in ‘Proceedings of the 18th Conference in Uncertainty in Artificial

Intelligence’, pp. 275–282.

Lafferty, J., McCallum, A. & Pereira, F. (2001), Conditional random fields: Probabilistic

models for segmenting and labeling sequence data, in ‘International Conference on

Machine Learning’, pp. 282–289.

Langford, J. (2006), ‘Tutorial on practical prediction theory for classification’, Journal

of machine learning research 6(1), 273.

Langford, J. & Shawe-Taylor, J. (2003), PAC-Bayes & margins, in ‘NIPS’, pp. 423–430.

Le Cun, L. (2004), Large scale online learning., in ‘Advances in Neural Information

Processing Systems 16: Proceedings of the 2003 Conference’, Vol. 16, MIT Press,

p. 217.

442 References

Le, Q. V., Ranzato, M.-A., Monga, R., Devin, M., Corrado, G., Chen, K., Dean, J. &

Ng, A. Y. (2012), Building high-level features using large scale unsupervised learning,

in ‘International Conference on Machine Learning (ICML)’.

Lecun, Y. & Bengio, Y. (1995), Convolutional Networks for Images, Speech and Time

Series, The MIT Press, pp. 255–258.

Lee, H., Grosse, R., Ranganath, R. & Ng, A. (2009), Convolutional deep belief networks

for scalable unsupervised learning of hierarchical representations, in ‘International

Conference on Machine Learning (ICML)’.

Littlestone, N. (1988), ‘Learning quickly when irrelevant attributes abound: A new

linear-threshold algorithm’, Machine Learning 2, 285–318.

Littlestone, N. & Warmuth, M. (1986), Relating data compression and learnability.

Unpublished manuscript.

Littlestone, N. & Warmuth, M. K. (1994), ‘The weighted majority algorithm’, Infor-

mation and Computation 108, 212–261.

Livni, R., Shalev-Shwartz, S. & Shamir, O. (2013), ‘A provably efficient algorithm for

training deep networks’, arXiv preprint arXiv:1304.7045 .

Livni, R. & Simon, P. (2013), Honest compressions and their application to compression

schemes, in ‘Conference on Learning Theory (COLT)’.

MacKay, D. J. (2003), Information theory, inference and learning algorithms,

Cambridge university press.

Mallat, S. & Zhang, Z. (1993), ‘Matching pursuits with time-frequency dictionaries’,

IEEE Transactions on Signal Processing 41, 3397–3415.

McAllester, D. A. (1998), Some PAC-Bayesian theorems, in ‘Conference on Learning

Theory (COLT)’.

McAllester, D. A. (1999), PAC-Bayesian model averaging, in ‘Conference on Learning

Theory (COLT)’, pp. 164–170.

McAllester, D. A. (2003), Simplified PAC-Bayesian margin bounds., in ‘Conference on

Learning Theory (COLT)’, pp. 203–215.

Minsky, M. & Papert, S. (1969), Perceptrons: An Introduction to Computational Ge-

ometry, The MIT Press.

Mukherjee, S., Niyogi, P., Poggio, T. & Rifkin, R. (2006), ‘Learning theory: stability is

sufficient for generalization and necessary and sufficient for consistency of empirical

risk minimization’, Advances in Computational Mathematics 25(1-3), 161–193.

Murata, N. (1998), ‘A statistical study of on-line learning’, Online Learning and Neural

Networks. Cambridge University Press, Cambridge, UK .

Murphy, K. P. (2012), Machine learning: a probabilistic perspective, The MIT Press.

Natarajan, B. (1995), ‘Sparse approximate solutions to linear systems’, SIAM J. Com-

puting 25(2), 227–234.

Natarajan, B. K. (1989), ‘On learning sets and functions’, Mach. Learn. 4, 67–97.

Nemirovski, A., Juditsky, A., Lan, G. & Shapiro, A. (2009), ‘Robust stochastic ap-

proximation approach to stochastic programming’, SIAM Journal on Optimization

19(4), 1574–1609.

Nemirovski, A. & Yudin, D. (1978), Problem complexity and method efficiency in opti-

mization, Nauka Publishers, Moscow.

Nesterov, Y. (2005), Primal-dual subgradient methods for convex problems, Technical

report, Center for Operations Research and Econometrics (CORE), Catholic Univer-

sity of Louvain (UCL).

References 443

Nesterov, Y. & Nesterov, I. (2004), Introductory lectures on convex optimization: A

basic course, Vol. 87, Springer Netherlands.

Novikoff, A. B. J. (1962), On convergence proofs on perceptrons, in ‘Proceedings of the

Symposium on the Mathematical Theory of Automata’, Vol. XII, pp. 615–622.

Parberry, I. (1994), Circuit complexity and neural networks, The MIT press.

Pearson, K. (1901), ‘On lines and planes of closest fit to systems of points in space’,

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science

2(11), 559–572.

Phillips, D. L. (1962), ‘A technique for the numerical solution of certain integral equa-

tions of the first kind’, Journal of the ACM 9(1), 84–97.

Pisier, G. (1980-1981), ‘Remarques sur un résultat non publié de B. maurey’.

Pitt, L. & Valiant, L. (1988), ‘Computational limitations on learning from examples’,

Journal of the Association for Computing Machinery 35(4), 965–984.

Poon, H. & Domingos, P. (2011), Sum-product networks: A new deep architecture, in

‘Conference on Uncertainty in Artificial Intelligence (UAI)’.

Quinlan, J. R. (1986), ‘Induction of decision trees’, Machine Learning 1, 81–106.

Quinlan, J. R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann.

Rabiner, L. & Juang, B. (1986), ‘An introduction to hidden markov models’, IEEE

ASSP Magazine 3(1), 4–16.

Rakhlin, A., Shamir, O. & Sridharan, K. (2012), Making gradient descent optimal for

strongly convex stochastic optimization, in ‘International Conference on Machine

Learning (ICML)’.

Rakhlin, A., Sridharan, K. & Tewari, A. (2010), Online learning: Random averages,

combinatorial parameters, and learnability, in ‘NIPS’.

Rakhlin, S., Mukherjee, S. & Poggio, T. (2005), ‘Stability results in learning theory’,

Analysis and Applications 3(4), 397–419.

Ranzato, M., Huang, F., Boureau, Y. & Lecun, Y. (2007), Unsupervised learning of

invariant feature hierarchies with applications to object recognition, in ‘Computer

Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on’, IEEE, pp. 1–

8.

Rissanen, J. (1978), ‘Modeling by shortest data description’, Automatica 14, 465–471.

Rissanen, J. (1983), ‘A universal prior for integers and estimation by minimum descrip-

tion length’, The Annals of Statistics 11(2), 416–431.

Robbins, H. & Monro, S. (1951), ‘A stochastic approximation method’, The Annals of

Mathematical Statistics pp. 400–407.

Rogers, W. & Wagner, T. (1978), ‘A finite sample distribution-free performance bound

for local discrimination rules’, The Annals of Statistics 6(3), 506–514.

Rokach, L. (2007), Data mining with decision trees: theory and applications, Vol. 69,

World scientific.

Rosenblatt, F. (1958), ‘The perceptron: A probabilistic model for information storage

and organization in the brain’, Psychological Review 65, 386–407. (Reprinted in

Neurocomputing (MIT Press, 1988).).

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986), Learning internal represen-

tations by error propagation, in D. E. Rumelhart & J. L. McClelland, eds, ‘Paral-

lel Distributed Processing – Explorations in the Microstructure of Cognition’, MIT

Press, chapter 8, pp. 318–362.

444 References

Sankaran, J. K. (1993), ‘A note on resolving infeasibility in linear programs by con-

straint relaxation’, Operations Research Letters 13(1), 19–20.

Sauer, N. (1972), ‘On the density of families of sets’, Journal of Combinatorial Theory

Series A 13, 145–147.

Schapire, R. (1990), ‘The strength of weak learnability’, Machine Learning 5(2), 197–

227.

Schapire, R. E. & Freund, Y. (2012), Boosting: Foundations and Algorithms, MIT press.

Schölkopf, B., Herbrich, R. & Smola, A. (2001), A generalized representer theorem, in

‘Computational learning theory’, pp. 416–426.

Schölkopf, B., Herbrich, R., Smola, A. & Williamson, R. (2000), A generalized repre-

senter theorem, in ‘NeuroCOLT’.

Schölkopf, B. & Smola, A. J. (2002), Learning with Kernels: Support Vector Machines,

Regularization, Optimization and Beyond, MIT Press.

Schölkopf, B., Smola, A. & Müller, K.-R. (1998), ‘Nonlinear component analysis as a

kernel eigenvalue problem’, Neural computation 10(5), 1299–1319.

Seeger, M. (2003), ‘Pac-bayesian generalisation error bounds for gaussian process clas-

sification’, The Journal of Machine Learning Research 3, 233–269.

Shakhnarovich, G., Darrell, T. & Indyk, P. (2006), Nearest-neighbor methods in learning

and vision: theory and practice, MIT Press.

Shalev-Shwartz, S. (2007), Online Learning: Theory, Algorithms, and Applications,

PhD thesis, The Hebrew University.

Shalev-Shwartz, S. (2011), ‘Online learning and online convex optimization’, Founda-

tions and Trends R© in Machine Learning 4(2), 107–194.

Shalev-Shwartz, S., Shamir, O., Srebro, N. & Sridharan, K. (2010), ‘Learnability,

stability and uniform convergence’, The Journal of Machine Learning Research

9999, 2635–2670.

Shalev-Shwartz, S., Shamir, O. & Sridharan, K. (2010), Learning kernel-based halfs-

paces with the zero-one loss, in ‘Conference on Learning Theory (COLT)’.

Shalev-Shwartz, S., Shamir, O., Sridharan, K. & Srebro, N. (2009), Stochastic convex

optimization, in ‘Conference on Learning Theory (COLT)’.

Shalev-Shwartz, S. & Singer, Y. (2008), On the equivalence of weak learnability and

linear separability: New relaxations and efficient boosting algorithms, in ‘Proceedings

of the Nineteenth Annual Conference on Computational Learning Theory’.

Shalev-Shwartz, S., Singer, Y. & Srebro, N. (2007), Pegasos: Primal Estimated sub-

GrAdient SOlver for SVM, in ‘International Conference on Machine Learning’,

pp. 807–814.

Shalev-Shwartz, S. & Srebro, N. (2008), SVM optimization: Inverse dependence on

training set size, in ‘International Conference on Machine Learning’, pp. 928–935.

Shalev-Shwartz, S., Zhang, T. & Srebro, N. (2010), ‘Trading accuracy for sparsity

in optimization problems with sparsity constraints’, Siam Journal on Optimization

20, 2807–2832.

Shamir, O. & Zhang, T. (2013), Stochastic gradient descent for non-smooth optimiza-

tion: Convergence results and optimal averaging schemes, in ‘International Confer-

ence on Machine Learning (ICML)’.

Shapiro, A., Dentcheva, D. & Ruszczyński, A. (2009), Lectures on stochastic program-

ming: modeling and theory, Vol. 9, Society for Industrial and Applied Mathematics.

References 445

Shelah, S. (1972), ‘A combinatorial problem; stability and order for models and theories

in infinitary languages’, Pac. J. Math 4, 247–261.

Sipser, M. (2006), Introduction to the Theory of Computation, Thomson Course Tech-

nology.

Slud, E. V. (1977), ‘Distribution inequalities for the binomial law’, The Annals of

Probability 5(3), 404–412.

Steinwart, I. & Christmann, A. (2008), Support vector machines, Springerverlag New

York.

Stone, C. (1977), ‘Consistent nonparametric regression’, The annals of statistics

5(4), 595–620.

Taskar, B., Guestrin, C. & Koller, D. (2003), Max-margin markov networks, in ‘NIPS’.

Tibshirani, R. (1996), ‘Regression shrinkage and selection via the lasso’, J. Royal.

Statist. Soc B. 58(1), 267–288.

Tikhonov, A. N. (1943), ‘On the stability of inverse problems’, Dolk. Akad. Nauk SSSR

39(5), 195–198.

Tishby, N., Pereira, F. & Bialek, W. (1999), The information bottleneck method, in

‘The 37’th Allerton Conference on Communication, Control, and Computing’.

Tsochantaridis, I., Hofmann, T., Joachims, T. & Altun, Y. (2004), Support vector

machine learning for interdependent and structured output spaces, in ‘Proceedings

of the Twenty-First International Conference on Machine Learning’.

Valiant, L. G. (1984), ‘A theory of the learnable’, Communications of the ACM

27(11), 1134–1142.

Vapnik, V. (1992), Principles of risk minimization for learning theory, in J. E. Moody,

S. J. Hanson & R. P. Lippmann, eds, ‘Advances in Neural Information Processing

Systems 4’, Morgan Kaufmann, pp. 831–838.

Vapnik, V. (1995), The Nature of Statistical Learning Theory, Springer.

Vapnik, V. N. (1982), Estimation of Dependences Based on Empirical Data, Springer-

Verlag.

Vapnik, V. N. (1998), Statistical Learning Theory, Wiley.

Vapnik, V. N. & Chervonenkis, A. Y. (1971), ‘On the uniform convergence of relative

frequencies of events to their probabilities’, Theory of Probability and its applications

XVI(2), 264–280.

Vapnik, V. N. & Chervonenkis, A. Y. (1974), Theory of pattern recognition, Nauka,

Moscow. (In Russian).

Von Luxburg, U. (2007), ‘A tutorial on spectral clustering’, Statistics and computing

17(4), 395–416.

von Neumann, J. (1928), ‘Zur theorie der gesellschaftsspiele (on the theory of parlor

games)’, Math. Ann. 100, 295—320.

Von Neumann, J. (1953), ‘A certain zero-sum two-person game equivalent to the opti-

mal assignment problem’, Contributions to the Theory of Games 2, 5–12.

Vovk, V. G. (1990), Aggregating strategies, in ‘Conference on Learning Theory

(COLT)’, pp. 371–383.

Warmuth, M., Glocer, K. & Vishwanathan, S. (2008), Entropy regularized lpboost, in

‘Algorithmic Learning Theory (ALT)’.

Warmuth, M., Liao, J. & Ratsch, G. (2006), Totally corrective boosting algorithms

that maximize the margin, in ‘Proceedings of the 23rd international conference on

Machine learning’.

446 References

Weston, J., Chapelle, O., Vapnik, V., Elisseeff, A. & Schölkopf, B. (2002), Kernel depen-

dency estimation, in ‘Advances in neural information processing systems’, pp. 873–

880.

Weston, J. & Watkins, C. (1999), Support vector machines for multi-class pattern

recognition, in ‘Proceedings of the Seventh European Symposium on Artificial Neural

Networks’.

Wolpert, D. H. & Macready, W. G. (1997), ‘No free lunch theorems for optimization’,

Evolutionary Computation, IEEE Transactions on 1(1), 67–82.

Zhang, T. (2004), Solving large scale linear prediction problems using stochastic gradi-

ent descent algorithms, in ‘Proceedings of the Twenty-First International Conference

on Machine Learning’.

Zhao, P. & Yu, B. (2006), ‘On model selection consistency of Lasso’, Journal of Machine

Learning Research 7, 2541–2567.

Zinkevich, M. (2003), Online convex programming and generalized infinitesimal gradi-

ent ascent, in ‘International Conference on Machine Learning’.

Index

3-term DNF, 107

F1-score, 244

`1 norm, 183, 332, 363, 386

accuracy, 38, 43

activation function, 269

AdaBoost, 130, 134, 362

all-pairs, 228, 404

approximation error, 61, 64

auto-encoders, 368

backpropagation, 278

backward elimination, 363

bag-of-words, 209

base hypothesis, 137

Bayes optimal, 46, 52, 260

Bayes rule, 354

Bayesian reasoning, 353

Bennet’s inequality, 426

Bernstein’s inequality, 426

bias, 37, 61, 64

bias-complexity tradeoff, 65

boolean conjunctions, 51, 79, 106

boosting, 130

boosting the confidence, 142

boundedness, 165

C4.5, 254

CART, 254

chaining, 389

Chebyshev’s inequality, 423

Chernoff bounds, 423

class-sensitive feature mapping, 230

classifier, 34

clustering, 307

spectral, 315

compressed sensing, 330

compression bounds, 410

compression scheme, 411

computational complexity, 100

confidence, 38, 43

consistency, 92

Consistent, 289

contraction lemma, 381

convex, 156

function, 157

set, 156

strongly convex, 174, 195

convex-Lipschitz-bounded learning, 166

convex-smooth-bounded learning, 166

covering numbers, 388

curse of dimensionality, 263

decision stumps, 132, 133

decision trees, 250

dendrogram, 309, 310

dictionary learning, 368

differential set, 188

dimensionality reduction, 323

discretization trick, 57

discriminative, 342

distribution free, 342

domain, 33

domain of examples, 48

doubly stochastic matrix, 242

duality, 211

strong duality, 211

weak duality, 211

Dudley classes, 81

efficient computable, 100

EM, 348

empirical error, 35

empirical risk, 35, 48

Empirical Risk Minimization, see ERM

entropy, 345

relative entropy, 345

epigraph, 157

ERM, 35

error decomposition, 64, 168

estimation error, 61, 64

Expectation-Maximization, see EM

face recognition, see Viola-Jones

feasible, 100

feature, 33

feature learning, 368

feature normalization, 365

feature selection, 357, 358

feature space, 215

feature transformations, 367

filters, 359

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

448 Index

forward greedy selection, 360

frequentist, 353

gain, 253

GD, see gradient descent

generalization error, 35

generative models, 342

Gini index, 254

Glivenko-Cantelli, 58

gradient, 158

gradient descent, 185

Gram matrix, 219

growth function, 73

halfspace, 118

homogenous, 118, 205

non-separable, 119

separable, 118

Halving, 289

hidden layers, 270

Hilbert space, 217

Hoeffding’s inequality, 56, 425

hold out, 146

hypothesis, 34

hypothesis class, 36

i.i.d., 38

ID3, 252

improper, see representation independent

inductive bias, see bias

information bottleneck, 317

information gain, 254

instance, 33

instance space, 33

integral image, 143

Johnson-Lindenstrauss lemma, 329

k-means, 311, 313

soft k-means, 352

k-median, 312

k-medoids, 312

Kendall tau, 239

kernel PCA, 326

kernels, 215

Gaussian kernel, 220

kernel trick, 217

polynomial kernel, 220

RBF kernel, 220

label, 33

Lasso, 365, 386

generalization bounds, 386

latent variables, 348

LDA, 347

Ldim, 290, 291

learning curves, 153

least squares, 124

likelihood ratio, 348

linear discriminant analysis, see LDA

linear predictor, 117

homogenous, 118

linear programming, 119

linear regression, 122

linkage, 310

Lipschitzness, 160, 176, 191

sub-gradient, 190

Littlestone dimension, see Ldim

local minimum, 158

logistic regression, 126

loss, 35

loss function, 48

0-1 loss, 48, 167

absolute value loss, 124, 128, 166

convex loss, 163

generalized hinge-loss, 233

hinge loss, 167

Lipschitz loss, 166

log-loss, 345

logistic loss, 127

ramp loss, 209

smooth loss, 166

square loss, 48

surrogate loss, 167, 302

margin, 203

Markov’s inequality, 422

Massart lemma, 380

max linkage, 310

maximum a-posteriori, 355

maximum likelihood, 343

McDiarmid’s inequality, 378

MDL, 89, 90, 251

measure concentration, 55, 422

Minimum Description Length, see MDL

mistake bound, 288

mixture of Gaussians, 348

model selection, 144, 147

multiclass, 47, 227, 402

cost-sensitive, 232

linear predictors, 230, 405

multi-vector, 231, 406

Perceptron, 248

reductions, 227, 405

SGD, 235

SVM, 234

multivariate performance measures, 243

Naive Bayes, 347

Natarajan dimension, 402

NDCG, 239

Nearest Neighbor, 258

k-NN, 258

neural networks, 268

feedforward networks, 269

layered networks, 269

SGD, 277

no-free-lunch, 61

non-uniform learning, 84

Index 449

Normalized Discounted Cumulative Gain,

see NDCG

Occam’s razor, 91

OMP, 360
one-vs-all, 227

one-vs-rest, see one-vs-all

one-vs.-all, 404
online convex optimization, 300

online gradient descent, 300

online learning, 287
optimization error, 168

oracle inequality, 179

orthogonal matching pursuit, see OMP
overfitting, 35, 65, 152

PAC, 43
agnostic PAC, 45, 46

agnostic PAC for general loss, 49

PAC-Bayes, 415
parametric density estimation, 342

PCA, 324
Pearson’s correlation coefficient, 359

Perceptron, 120

kernelized Perceptron, 225
multiclass, 248

online, 301

permutation matrix, 242
polynomial regression, 125

precision, 244

predictor, 34
prefix free language, 89

Principal Component Analysis, see PCA

prior knowledge, 63
Probably Approximately Correct, see PAC

projection, 193
projection lemma, 193

proper, 49

pruning, 254

Rademacher complexity, 375

random forests, 255
random projections, 329

ranking, 238

bipartite, 243
realizability, 37
recall, 244

regression, 47, 122, 172
regularization, 171

Tikhonov, 172, 174

regularized loss minimization, see RLM
representation independent, 49, 107
representative sample, 54, 375

representer theorem, 218
ridge regression, 172

kernel ridge regression, 225

RIP, 331
risk, 35, 45, 48
RLM, 171, 199

sample complexity, 44

Sauer’s lemma, 73

self-boundedness, 162
sensitivity, 244

SGD, 190
shattering, 69, 403

single linkage, 310

Singular Value Decomposition, see SVD
Slud’s inequality, 428

smoothness, 162, 177, 198

SOA, 292
sparsity-inducing norms, 363

specificity, 244

spectral clustering, 315
SRM, 85, 145

stability, 173

Stochastic Gradient Descent, see SGD
strong learning, 132

Structural Risk Minimization, see SRM
structured output prediction, 236

sub-gradient, 188

Support Vector Machines, see SVM
SVD, 431

SVM, 202, 383

duality, 211
generalization bounds, 208, 383

hard-SVM, 203, 204

homogenous, 205
kernel trick, 217

soft-SVM, 206

support vectors, 210

target set, 47

term-frequency, 231
TF-IDF, 231

training error, 35

training set, 33
true error, 35, 45

underfitting, 65, 152
uniform convergence, 54, 55

union bound, 39

unsupervised learning, 308

validation, 144, 146
cross validation, 149
train-validation-test split, 150

Vapnik-Chervonenkis dimension, see VC

dimension
VC dimension, 67, 70

version space, 289
Viola-Jones, 139

weak learning, 130, 131

Weighted-Majority, 295

	Preface
	Introduction
	Part I Foundations
	A Gentle Start
	A Formal Learning Model
	Learning via Uniform Convergence
	The Bias-Complexity Tradeoff
	The VC-Dimension
	Nonuniform Learnability
	The Runtime of Learning

	Part II From Theory to Algorithms
	Linear Predictors
	Boosting
	Model Selection and Validation
	Convex Learning Problems
	Regularization and Stability
	Stochastic Gradient Descent
	Support Vector Machines
	Kernel Methods
	Multiclass, Ranking, and Complex Prediction Problems
	Decision Trees
	Nearest Neighbor
	Neural Networks

	Part III Additional Learning Models
	Online Learning
	Clustering
	Dimensionality Reduction
	Generative Models
	Feature Selection and Generation

	Part IV Advanced Theory
	Rademacher Complexities
	Covering Numbers
	Proof of the Fundamental Theorem of Learning Theory
	Multiclass Learnability
	Compression Bounds
	PAC-Bayes
	to 1.15Appendix ATechnical Lemmas
	to 1.15Appendix BMeasure Concentration
	to 1.15Appendix CLinear Algebra
	Notes
	References
	Index

